852 resultados para ORGANOZINC REAGENTS
Resumo:
The study of green chemistry is dedicated to eliminating or reducing toxic waste. One route to accomplish this goal is to explore alternative reaction conditions and parameters resulting in the development of more benign synthetic routes and reagents. The primary focus of this research is to find optimal reaction conditions for the oxidation of a primary alcohol to an aldehyde. As a case study, the oxidation of benzyl alcohol to benzaldehyde, a common industrial process, was examined. Traditionally carried out using the Jones Reagent, commonly referred to as chromium (IV) oxide or chromium trioxide (CrO3) in sulphuric acid, a great deal of research went into utilizing less toxic reagents, such as MnO2 or KMnO4 supported on a clay base. This research has led to an improvement on these alternatives, using a lithium chloride (LiCl) catalyst in a montmorillonite K10 clay solid phase, together with the oxidizing agent hydrogen peroxide, as even greener alternatives to these traditional oxidizing agents. Experiments were carried out to determine the lifetime of this LiCl/clay system as compared to MnO2 and KMnO4, to investigate its ability to catalyze the oxidation of other aromatic alcohols (such as 4-methoxybenzyl alcohol and diphenylmethanol), and to further improve the system’s adherence to green chemistry principles. Green solvent alternatives were examined by replacing the toluene solvent with dimethylcarbonate (DMC), and reaction conditions were optimized to improve product yield. It was determined that the LiCl/H2O2 system was, in most cases, equally as effective at catalyzing the oxidation of benzyl alcohol to benzaldehyde. Although the catalyst and oxidizing agent eliminated the toxic waste generated from chromium reagents, it offered significant challenges in product isolation, because of an aqueous-organic phase separation.
Resumo:
The routine analysis for quantization of organic acids and sugars are generally slow methods that involve the use and preparation of several reagents, require trained professional, the availability of special equipment and is expensive. In this context, it has been increasing investment in research whose purpose is the development of substitutive methods to reference, which are faster, cheap and simple, and infrared spectroscopy have been highlighted in this regard. The present study developed multivariate calibration models for the simultaneous and quantitative determination of ascorbic acid, citric, malic and tartaric and sugars sucrose, glucose and fructose, and soluble solids in juices and fruit nectars and classification models for ACP. We used methods of spectroscopy in the near infrared (Near Infrared, NIR) in association with the method regression of partial least squares (PLS). Were used 42 samples between juices and fruit nectars commercially available in local shops. For the construction of the models were performed with reference analysis using high-performance liquid chromatography (HPLC) and refractometry for the analysis of soluble solids. Subsequently, the acquisition of the spectra was done in triplicate, in the spectral range 12500 to 4000 cm-1. The best models were applied to the quantification of analytes in study on natural juices and juice samples produced in the Paraná Southwest Region. The juices used in the application of the models also underwent physical and chemical analysis. Validation of chromatographic methodology has shown satisfactory results, since the external calibration curve obtained R-square value (R2) above 0.98 and coefficient of variation (%CV) for intermediate precision and repeatability below 8.83%. Through the Principal Component Analysis (PCA) was possible to separate samples of juices into two major groups, grape and apple and tangerine and orange, while for nectars groups separated guava and grape, and pineapple and apple. Different validation methods, and pre-processes that were used separately and in combination, were obtained with multivariate calibration models with average forecast square error (RMSEP) and cross validation (RMSECV) errors below 1.33 and 1.53 g.100 mL-1, respectively and R2 above 0.771, except for malic acid. The physicochemical analysis enabled the characterization of drinks, including the pH working range (variation of 2.83 to 5.79) and acidity within the parameters Regulation for each flavor. Regression models have demonstrated the possibility of determining both ascorbic acids, citric, malic and tartaric with successfully, besides sucrose, glucose and fructose by means of only a spectrum, suggesting that the models are economically viable for quality control and product standardization in the fruit juice and nectars processing industry.
Resumo:
Re-creating and understanding the origin of life represents one of the major challenges facing the scientific community. We will never know exactly how life started on planet Earth, however, we can reconstruct the most likely chemical pathways that could have contributed to the formation of the first living systems. Traditionally, prebiotic chemistry has investigated the formation of modern life’s precursors and their self-organisation under very specific conditions thought to be ‘plausible’. So far, this approach has failed to produce a living system from the bottom-up. In the work presented herein, two different approaches are employed to explore the transition from inanimate to living matter. The development of microfluidic technology during the last decades has changed the way traditional chemical and biological experiments are performed. Microfluidics allows the handling of low volumes of reagents with very precise control. The use of micro-droplets generated within microfluidic devices is of particular interest to the field of Origins of Life and Artificial Life. Whilst many efforts have been made aiming to construct cell-like compartments from modern biological constituents, these are usually very difficult to handle. However, microdroplets can be easily generated and manipulated at kHz rates, making it suitable for high-throughput experimentation and analysis of compartmentalised chemical reactions. Therefore, we decided to develop a microfluidic device capable of manipulating microdroplets in such a way that they could be efficiently mixed, split and sorted within iterative cycles. Since no microfluidic technology had been developed before in the Cronin Group, the first chapter of this thesis describes the soft lithographic methods and techniques developed to fabricate microfluidic devices. Also, special attention is placed on the generation of water-in-oil microdroplets, and the subsequent modules required for the manipulation of the droplets such as: droplet fusers, splitters, sorters and single/multi-layer micromechanical valves. Whilst the first part of this thesis describes the development of a microfluidic platform to assist chemical evolution, finding a compatible set of chemical building blocks capable of reacting to form complex molecules with endowed replicating or catalytic activity was challenging. Abstract 10 Hence, the second part of this thesis focuses on potential chemistry that will ultimately possess the properties mentioned above. A special focus is placed on the formation of peptide bonds from unactivated amino acids, despite being one of the greatest challenges in prebiotic chemistry. As opposed to classic prebiotic experiments, in which a specific set of conditions is studied to fit a particular hypothesis, we took a different approach: we explored the effects of several parameters at once on a model polymerisation reaction, without constraints on hypotheses on the nature of optimum conditions or plausibility. This was facilitated by development of a new high-throughput automated platform, allowing the exploration of a much larger number of parameters. This led us to discover that peptide bond formation is less challenging than previously imagined. Having established the right set of conditions under which peptide bond formation was enhanced, we then explored the co-oligomerisation between different amino acids, aiming for the formation of heteropeptides with different structure or function. Finally, we studied the effect of various environmental conditions (rate of evaporation, presence of salts or minerals) in the final product distribution of our oligomeric products.
Resumo:
As amidas constituem uma classe de moléculas com amplo perfil farmacológico e que despertam atenção também pela capacidade de coordenar metais de transição. Esta proposta de trabalho compreende, inicialmente, a síntese de 3 ligantes bis-amidas simétricas tendo como reagentes de partida etilenodiamina, orto-fenilenodiamina, salicilato de metila e cloreto de benzoíla. Esses compostos foram caracterizados por espectroscopia no infravermelho (IV), ressonância magnética nuclear de hidrogênio (RMN 1H) e difração de raios X em monocristal (DRX). Após sintetizar e caracterizar esses compostos, a outra etapa do trabalho foi a utilização dessas bis-amidas como ligante na reação catalítica de acoplamento Suzuki. O sistema catalítico otimizado à base destes ligantes na presença de paládio, foi capaz de promover a formação de bifenilas com rendimentos superiores a 90% à temperatura de 50 °C e tempo reacional de 1 h. Este sistema se mostrou eficiente para reagentes com diversos grupos substituintes (eletroretiradores e eletrodoadores) nos anéis aromáticos dos haletos de arila e ácidos arilborônicos.
The whole-cell immobilization of D-hydantoinase-engineered Escherichia coli for D-CpHPG biosynthesis
Resumo:
Background: D-Hydroxyphenylglycine is considered to be an important chiral molecular building-block of antibiotic reagents such as pesticides, and β-lactam antibiotics. The process of its production is catalyzed by D-hydantoinase and D-carbamoylase in a two-step enzyme reaction. How to enhance the catalytic potential of the two enzymes is valuable for industrial application. In this investigation, an Escherichia coli strain genetically engineered with D-hydantoinase was immobilized by calcium alginate with certain adjuncts to evaluate the optimal condition for the biosynthesis of D-carbamoyl-p-hydroxyphenylglycine (D-CpHPG), the compound further be converted to D-hydroxyphenylglycine (D-HPG) by carbamoylase. Result: The optimal medium to produce D-CpHPG by whole-cell immobilization was a modified Luria-Bertani (LB) added with 3.0% (W/V) alginate, 1.5% (W/V) diatomite, 0.05% (W/V) CaCl2 and 1.00 mM MnCl2. The optimized diameter of immobilized beads for the whole-cell biosynthesis here was 2.60 mm. The maximized production rates of D-CpHPG were up to 76%, and the immobilized beads could be reused for 12 batches. Conclusions: This investigation not only provides an effective procedure for biological production of D-CpHPG, but gives an insight into the whole-cell immobilization technology. © 2016 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
Resumo:
How can we control the experimental conditions towards the isolation of specific structures? Why do particular architectures form? These are some challenging questions that synthetic chemists try to answer, specifically within polyoxometalate (POM) chemistry, where there is still much unknown regarding the synthesis of novel molecular structures in a controlled and predictive manner. This work covers a wide range of POM chemistry, exploring the redox self-assembly of polyoxometalate clusters, using both “one-pot”, flow and hydrothermal conditions. For this purpose, different vanadium, molybdenum and tungsten reagents, heteroatoms, inorganic salts and reducing agents have been used. The template effect of lone-pair containing pyramidal heteroatoms has been investigated. Efforts to synthesize new POM clusters displaying pyramidal heteroanions (XO32-, where X= S, Se, Te, P) are reported. The reaction of molybdenum with vanadium in the presence of XO32- heteroatoms is explored, showing how via the cation and experimental control it is possible to direct the self-assembly process and to isolate isostructural compounds. A series of four isostructural (two new, namely {Mo11V7P} and {Mo11V7Te} and two already known, namely {Mo11V7Se} and {Mo11V7S} disordered egg-shaped Polyoxometalates have been reported. The compounds were characterized by X-ray structural analysis, TGA, UV-Vis, FT-IR, Elemental and Flame Atomic Absorption Spectroscopy (FAAS) analysis and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Cyclic Voltammetry measurements have been carried out in all four compounds showing the effect of the ionic density of the heteroatom on the potential. High-Resolution ESI-MS studies have revealed that the structures retain their integrity in solution. Efforts to synthesize new mixed-metal compounds led to isolation, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ-isomer of the Keggin polyoxometalate cluster anion, {H2W4V9O33(C6H13NO3)}, by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster. Control experiments (in the absence of the organic compound) have proven that the tripodal ligand plays crucial role on the formation of the isomer. The six vanadium metal centres, which consist the upper part of the cluster, are bonded to the “capping” TEA tripodal ligand. This metal-ligand bonding directs and stabilises the formation of the final product. The δ-Keggin species was characterized by single-crystal X-ray diffraction, FT-IR, UV-vis, NMR and ESI-MS spectrometry. Electronic structure and structure-stability correlations were evaluated by means of DFT calculations. The compounds exhibited photochromic properties by undergoing single-crystal-to-single-crystal (SC-SC) transformations and changing colour under light. Non-conventional synthetic approaches are also used for the synthesis of the POM clusters comparing the classical “one-pot” reaction conditions and exploring the synthetic parameters of the synthesis of POM compounds. Reactions under hydrothermal and flow conditions, where single crystals that depend on the solubility of the minerals under hot water and high pressure can be synthesized, resulted in the isolation of two isostructural compounds, namely, {Mo12V3Te5}. The compound isolated from a continuous processing method, crystallizes in a hexagonal crystal system, forming a 2D porous plane net, while the compound isolated using hard experimental conditions (high temperature and pressure) crystallizes in monoclinic system, resulting in a different packing configuration. Utilizing these alternative synthetic approaches, the most kinetically and thermodynamically compounds would possibly be isolated. These compounds were characterised by single-crystal X-ray diffraction, FT-IR and UV-vis spectroscopy. Finally, the redox-controlled driven oscillatory template exchange between phosphate (P) and vanadate (V) anions enclosed in an {M18O54(XO4)2} cluster is further investigated using UV-vis spectroscopy as a function of reaction time, showed that more than six complete oscillations interconverting the capsule species present in solution from {P2M18} to {V2M18} were possible, provided that a sufficient concentration of the TEA reducing agent was present in solution. In an effort to investigate the periodicity of the exchange of the phosphate and vanadate anions, time dependent Uv-vis measurements were performed for a period at a range of 170-550 hours. Different experimental conditions were also applied in order to investigate the role of the reducing agent, as well as the effect of other experimental variables on the oscillatory system.
Resumo:
Porous polymer particles are used in an extraordinarily wide range of advanced and everyday applications, from combinatorial chemistry, solid-phase organic synthesis and polymer-supported reagents, to environmental analyses and the purification of drinking water. The installation and exploitation of functional chemical handles on the particles is often a prerequisite for their successful exploitation, irrespective of the application and the porous nature of the particles. New methodology for the chemical modification of macroreticular polymers is the primary focus of the work presented in this thesis. Porous polymer microspheres decorated with a diverse range of functional groups were synthesised by the post-polymerisation chemical modification of beaded polymers via olefin cross metathesis. The polymer microspheres were prepared by the precipitation polymerisation of divinylbenzene in porogenic (pore-forming) solvents; the olefin cross-metathesis (CM) functionalisation reactions exploited the pendent (polymer-bound) vinyl groups that were not consumed by polymerisation. Olefin CM reactions involving the pendent vinyl groups were performed in dichloromethane using second-generation Grubbs catalyst (Grubbs II), and a wide range of coupling partners used. The results obtained indicate that high quality, porous polymer microspheres synthesised by precipitation polymerisation in near-θ solvents can be functionalised by olefin CM under very mild conditions to install a diverse range of chemical functionalities into a common polydivinylbenzene precursor. Gel-type polymer microspheres were prepared by the precipitation copolymerisation reaction of divinylbenzene and allyl methacrylate in neat acetonitrile. The unreacted pendent vinyl groups that were not consumed by polymerisation were subjected to internal and external olefin metathesis-based hypercrosslinking reactions. Internal hypercrosslinking was carried out by using ring-closing metathesis (RCM) reactions in toluene using Grubbs II catalyst. Under these conditions, hypercrosslinked (HXL) polymers with specific surface areas around 500 m2g-1 were synthesised. External hypercrosslinking was attempted by using CM/RCM in the presence of a multivinyl coupling partner in toluene using second-generation Hoveyda-Grubbs catalyst. The results obtained indicate that no HXL polymers were obtained. However, during the development of this methodology, a new type of polymerisation was discovered with tetraallylorthosilicate as monomer.
Resumo:
Nanopore-based sequencer will open the path to the fourth-generation DNA sequencing technology. The main differences between this technique and the previous ones are: DNA molecule that will be sequenced does not need a previous amplification step, is not necessary any type of specific label both molecular adaptors, and it has been abolished enzymatic process in the nucleotide sequence identification event. These differences have as result a more economic method since don’t spend the necessary reagents for the previous techniques, furthermore it lets to sequence samples with a low DNA concentration. This technique is based in the use of a membrane with a biologic nanopore inserted in it whereby the molecule to analyze (analyte) it made to pass, this membrane is placed between two reservoirs containing ions, when an external volatage is applied in both sides this lead to an ion current through the nanopore. When an analyte cross the nanopore the ion current is modified, that modification in the amplitude and duration of ion current determine the physical and chemical properties of that analyte. By means of subsequent statistical analyzes it can be determined to what sequence own this ion current blockade patterns. More used nanopores are the biologic ones, although they are working to develop synthetic nanopores. The main biologic nanopores are: α-Hemolysin from Staphylococcus aureus (α-HL), Mycobacterium smegmatis porin A (MspA) and bacteriophage phi29 pore (phi29). Α-HL and MspA have in their narrowest point a diameter similar to nucleotide size, they are functional at high temperature both wide range of pH (2-12) but MspA is able to read four nucleotide at the same time while α- HL just can read one by one. Finally, phi29 present a bigger diameter what let to get information about DNA spatial conformation and their interaction with proteins (Feng et al., 2015). Nowaday Oxford Nanopore Technologies (ONT) is the only company which has developed Nanopore technology; they have two devices available to sequencing (PromethION and MinION). The MinION is a single-use DNA sequencing device with the size of a USB memory with a total of 3000 nanopores that can sequence until 200kb. The PrometheION is big size sequencer that own 48 different cells, what let to sequence different samples at the same time, with a total of 144.000 nanopores and reading of several megabases (https://www.nanoporetech.com/). The high processivity and low cost become this technique in a great option to massive- sequencing.
Resumo:
Les sulfilimines et les sulfoximines sont des motifs structuraux dont l’intérêt synthétique est grandissant, notamment du fait de leurs applications en chimie médicinale et en agrochimie. Les travaux rapportés dans cet ouvrage décrivent le développement de nouvelles méthodes de synthèse efficaces pour la production de ces unités atypiques. Ces méthodes sont basées sur la réactivité d’une source d’azote électrophile, vis-à-vis de thioéthers et de sulfoxydes. L’utilisation d’un complexe métallique introduit en quantité catalytique a permis de favoriser le processus réactionnel. En tirant bénéfice de l’expertise de notre groupe de recherche sur le développement de réactions d’amination stéréosélectives de liaisons C-H et d’aziridination de styrènes, nous avons d’abord étudié la réactivité des N-mésyloxycarbamates comme source d’azote électrophile. Après avoir optimisé sa synthèse sur grande échelle, ce réactif chiral a été utilisé dans des réactions d’amination de thioéthers et de sulfoxydes, catalysées par un dimère de rhodium (II) chiral. Un processus diastéréosélectif efficace a été mis au point, permettant de produire des sulfilimines et des sulfoximines chirales avec d’excellents rendements et sélectivités. Au cours de l’optimisation de cette méthode de synthèse, nous avons pu constater l’effet déterminant de certains additifs sur la réactivité et la sélectivité de la réaction. Une étude mécanistique a été entreprise afin de comprendre leur mode d’action. Il a été observé qu’une base de Lewis telle que le 4-diméthylaminopyridine (DMAP) pouvait se coordiner au dimère de rhodium(II) et modifier ses propriétés structurales et redox. Les résultats que nous avons obtenus suggèrent que l’espèce catalytique active est un dimère de rhodium de valence mixte Rh(II)/Rh(III). Nous avons également découvert que l’incorporation de sels de bispyridinium avait une influence cruciale sur la diastéréosélectivité de la réaction. D’autres expériences sur la nature du groupe partant du réactif N-sulfonyloxycarbamate nous ont permis de postuler qu’une espèce nitrénoïde de rhodium était l’intermédiaire clé du processus d’amination. De plus, l’exploitation des techniques de chimie en débit continu nous a permis de développer une méthode d’amination de thioéthers et de sulfoxydes très performante, en utilisant les azotures comme source d’azote électrophile. Basée sur la décompositon photochimique d’azotures en présence d’un complexe de fer (III) simple et commercialement disponible, nous avons été en mesure de produire des sulfilimines et des sulfoximines avec d’excellents rendements. Le temps de résidence du procédé d’amination a pu être sensiblement réduit par la conception d’un nouveau type de réacteur photochimique capillaire. Ces améliorations techniques ont permis de rendre la synthèse plus productive, ce qui constitue un élément important d’un point de vue industriel.
Resumo:
Les macrolactones sont des squelettes structuraux importants dans de nombreuses sphères de l’industrie chimique, en particulier dans les marchés pharmaceutiques et cosmétiques. Toutefois, la stratégie traditionnelle pour la préparation de macrolactones demeure incommode en requérant notamment l’ajout (super)stœchiométrique d’agents activateurs. Conséquemment, des quantités stœchiométriques de sous-produits sont générées; ils sont souvent toxiques, dommageables pour l’environnement et nécessitent des méthodes de purification fastidieuses afin de les éliminer. La présente thèse décrit le développement d’une macrolactonisation efficace catalysée au hafnium directement à partir de précurseurs portant un acide carboxylique et un alcool primaire, ne générant que de l’eau comme sous-produit et ne nécessitant pas de techniques d’addition lente et/ou azéotropique. Le protocole a également été adapté à la synthèse directe de macrodiolides à partir de mélanges équimolaires de diols et de diacides carboxyliques et à la synthèse de dimères tête-à-queue de seco acides. Des muscs macrocycliques ainsi que des macrolactones pertinentes à la chimie médicinale ont pu être synthétisés avec l’approche développée. Un protocole pour l’estérification directe catalysée au hafnium entre des acides carboxyliques et des alcools primaires a aussi été développé. Différentes méthodes pour la macrolactonisation catalytique directe entre des alcools secondaires et des acides carboxyliques ont été étudiées. En outre, la stratégie de séparation de phase en macrocyclisation en débit continu a été appliquée lors de la synthèse totale formelle de la macrolactone ivorenolide A. Les étapes-clés de la synthèse incluent une macrocyclisation par le couplage d’alcynes de Glaser-Hay et une réaction de métathèse d’alcènes Z-sélective.
Resumo:
Antecedentes. La ejecución de las Normas de Bioseguridad, es una responsabilidad de la institución donde se incluye a todos los funcionarios. En el servicio de partos existen elementos nocivos o potencialmente peligrosos, como los productos biológicos provenientes de los pacientes y los reactivos químicos de diferente naturaleza. Es necesario reconocer estos peligros para establecer y aplicar medidas de prevención y seguridad (1). Objetivo: Determinar los conocimientos, actitudes y prácticas del personal médico y de enfermería en la sala de partos del hospital José Carrasco Arteaga, en la aplicación de las normas de bioseguridad en la atención del recién nacido, Cuenca 2015. Material y métodos: Se realizó un estudio cuantitativo - descriptivo, la muestra estaba constituida por 50 profesionales de la sala de partos del Hospital José Carrasco Arteaga. Las técnicas de investigación fueron la encuesta, la observación y la revisión bibliográfica, los instrumentos utilizados fueron ficha de registro, y la encuesta. Los resultados fueron analizados en tablas simples y de contingencia mediante los programas de Word. Excel y SPSS versión 21. Resultados: el 98% del personal desecha correctamente el material corto punzantes, el 86% del personal siempre lava sus manos antes y después de atender a la madre. Conclusiones: Al finalizar podemos decir que el 98% de los profesionales conoce lo que es bioseguridad, pero el 80% de los profesionales no aplica estas normas en el servicio. Para mejorar esto se debe elaborar y mejorar estrategias de capacitación.
Resumo:
Background Diabetes mellitus is a global public health problem. In Malawi, the prevalence of diabetes is 5.6% but the quality of care has not been well studied. Objective The aim of this study was to assess the quality of care offered to diabetic patients in Mangochi district. Methods This was a cross sectional descriptive study. Quantitative data were collected using a questionnaire from a sample of 75 diabetic patients (children and adults) who attended the Diabetes Clinic at Mangochi District Hospital between 20012 and 2013. Qualitative data were also collected using semi-structured interviews with eight Key Informants from among the District Health Management Team. Frequencies and cross-tabulation were obtained from the quantitative data. Patients’ master cards were checked to validate results. Clinical knowledge about diabetes, care practices and resources were the themes analysed from the qualitative data. Results Among the 75 participants interviewed, 46 were females and 29 males. The overall mean age was 48.3 years (45.6 for females and 53.3 for males). More than half of patients had little or no information about diabetes (40.0 % (n=30) and 22.7 (n=17) respectively. The majority of patients were taking their medicines regularly 98.7% (n=74). Only 17.3% (n=13) reported having their feet inspected regularly. Fifty-six percent of patients were satisfied about services provision. Some nurses and clinicians were trained on diabetes care but most of them left. Guidelines on diabetes management were not accessible. There were shortages in medicines (e.g. soluble insulin) and reagents. Information Education and Communication messages were offered through discussions, experiences sharing and posters. Conclusion Quality of diabetes care provided to diabetic patients attended to Mangochi hospital was sub-optimal due to lack of knowledge among patients and clinicians and resources. More efforts are needed towards retention of trained staff, provision of pharmaceutical and laboratory resources and health education.
Resumo:
Microfluidic technologies have great potential to help create automated, cost-effective, portable devices for rapid point of care (POC) diagnostics in diverse patient settings. Unfortunately commercialization is currently constrained by the materials, reagents, and instrumentation required and detection element performance. While most microfluidic studies utilize planar detection elements, this dissertation demonstrates the utility of porous volumetric detection elements to improve detection sensitivity and reduce assay times. Impedemetric immunoassays were performed utilizing silver enhanced gold nanoparticle immunoconjugates (AuIgGs) and porous polymer monolith or silica bead bed detection elements within a thermoplastic microchannel. For a direct assay with 10 µm spaced electrodes the detection limit was 0.13 fM AuIgG with a 3 log dynamic range. The same assay was performed with electrode spacing of 15, 40, and 100 µm with no significant difference between configurations. For a sandwich assay the detection limit was10 ng/mL with a 4 log dynamic range. While most impedemetric assays rely on expensive high resolution electrodes to enhance planar senor performance, this study demonstrates the employment of porous volumetric detection elements to achieve similar performance using lower resolution electrodes and shorter incubation times. Optical immunoassays were performed using porous volumetric capture elements perfused with refractive index matching solutions to limit light scattering and enhance signal. First, fluorescence signal enhancement was demonstrated with a porous polymer monolith within a silica capillary. Next, transmission enhancement of a direct assay was demonstrated by infusing aqueous sucrose solutions through silica bead beds with captured silver enhanced AuIgGs yielding a detection limit of 0.1 ng/mL and a 5 log dynamic range. Finally, ex situ functionalized porous silica monolith segments were integrated into thermoplastic channels for a reflectance based sandwich assay yielding a detection limit of 1 ng/mL and a 5 log dynamic range. The simple techniques for optical signal enhancement and ex situ element integration enable development of sensitive, multiplexed microfluidic sensors. Collectively the demonstrated experiments validate the use of porous volumetric detection elements to enhance impedemetric and optical microfluidic assays. The techniques rely on commercial reagents, materials compatible with manufacturing, and measurement instrumentation adaptable to POC diagnostics.
Resumo:
Hypothesis: The possibility of tailoring the final properties of environmentally friendly waterborne polyurethane and polyurethane-urea dispersions and the films they produce makes them attractive for a wide range of applications. Both the reagents content and the synthesis route contribute to the observed final properties. Experiments: A series of polyurethane-urea and polyurethane aqueous dispersions were synthesized using 1,2-ethanediamine and/or 1,4-butanediol as chain extenders. The diamine content was varied from 0 to 4.5 wt%. Its addition was carried out either by the classical heterogeneous reaction medium (after phase inversion step), or else by the alternative homogeneous medium (prior to dispersion formation). Dispersions as well as films prepared from dispersions have been later extensively characterized. Findings: 1,2-Ethanediamine addition in heterogeneous medium leads to dispersions with high particle sizes and broad distributions whereas in homogeneous medium, lower particle sizes and narrow distributions were observed, thus leading to higher uniformity and cohesiveness among particles during film formation. Thereby, stress transfer is favored adding the diamine in a homogeneous medium; and thus the obtained films presented quite higher stress and modulus values. Furthermore, the higher uniformity of films tends to hinder water molecules transport through the film, resulting, in general, in a lower water absorption capacity.