998 resultados para ORGANIC NETWORKS
Resumo:
Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node-like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin(+) T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell-rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter-CXCL13-transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell-rich zone.
Resumo:
The Upper Limestone Member of the Corones Formation of the Spanish Pyrenees consists of various units (Lower and Upper Foraminifera Units, Shale Unit, Cherty-ostracode Unit, Ostracode Unit and Chara-ostracode Unit) and offers strong facies and lateral thickness (20 to 80 m) variations. Detailed facies analyses, fifth-order cycles and organic geochemical determinations in the central domain of the Corones platform carbonates (Cherty-ostracode Unit), lower Eocene in age, were carried out to establish a case of close relationship between variations in organic matter productivity and cyclicity with annual period. The Cherty-ostracode Unit displays a continuous and pervasive fifth-order cyclicity, represented by 5 cycles. Each cycle consists of a lower part (mollusc facies) and an upper part (laminated ostracode facies). The calculated fifth-order cycle period ranges from about 17,000 to 28,000 years, which falls within the Milankovitch Band. Variations in organic matter content related to these carbonate cycles have been established. The lower mollusc facies members show a low organic carbon content and Hydrogen Index (HI) below 0.6% in weight and 261, respectively. By contrast, the upper laminated ostracode facies members show high organic carbon contents (up to 2% in weight) and high HI (between 164 and 373), and are also characterized by important silicification processes (the content in chert is up to 30%). The organic geochemistry resulting from these organic rich levels reflects a contribution of algal marine input.
Resumo:
Very high concentrations of uranium (up to 4000 ppm) were found in a natural soil in the Dischma valley, an alpine region in the Grisons canton in Switzerland. The goal of this study was to examine the redox state and the nature of uranium binding in the soil matrix in order to understand the accumulation mechanism. Pore water profiles collected from Dischma soil revealed the establishment of anoxic conditions with increasing soil depth. A combination of chemical extraction methods and spectroscopy was applied to characterize the redox state and binding environment of uranium in the soil. Bicarbonate extraction under anoxic conditions released most of the uranium indicating that uranium occurs predominantly in the hexavalent form. Surprisingly, the uranium redox state did not vary greatly as a function of depth. X-ray absorption near edge spectroscopy (XANES), confirmed that uranium was present as a mixture of U(VI) and U(IV) with U(VI) dominating. Sequential extractions of soil samples showed that the dissolution of solid organic matter resulted in the simultaneous release of the majority of the soil uranium content (>95%). Extended X-ray absorption fine structure (EXAFS) spectroscopy also revealed that soil-associated uranium in the soil matrix was mainly octahedrally coordinated, with an average of 1.7 axial (at about 1.76 Å) and 4.6 to 5.3 equatorial oxygen atoms (at about 2.36 Å) indicating the dominance of a uranyl-like (UO22+) structure presumably mixed with some U(IV). An additional EXAFS signal (at about 3.2 Å) identified in some spectra suggested that uranium was also bound (via an oxygen atom) to a light element such as carbon, phosphorus or silicon. Gamma spectrometric measurements of soil profiles failed to identify uranium long-life daughter products in the soil which is an indication that uranium originates elsewhere and was transported to its current location by water. Finally, it was found that the release of uranium from the soil was significantly promoted at very low pH values (pH 2) and increased with increasing pH values (between pH 5 and 9).
Resumo:
Tiivistelmä: Kunnostusojituksen pitkän ajan vaikutus valumaveden ominaisuuksiin
Resumo:
As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).
Resumo:
Labile or mutation-sensitised proteins may spontaneously convert into aggregation-prone conformations that may be toxic and infectious. This hazardous behavior, which can be described as a form of "molecular criminality", can be actively counteracted in the cell by a network of molecular chaperone and proteases. Similar to law enforcement agents, molecular chaperones and proteases can specifically identify, apprehend, unfold and thus neutralize "criminal" protein conformers, allowing them to subsequently refold into harmless functional proteins. Irreversibly damaged polypeptides that have lost the ability to natively refold are preferentially degraded by highly controlled ATP-consuming proteases. Damaged proteins that escape proteasomal degradation can also be "incarcerated" into dense amyloids, "evicted" from the cell, or internally "exiled" to the lysosome to be hydrolysed and recycled. Thus, remarkable parallels exist between molecular and human forms of criminality, as well as in the cellular and social responses to various forms of crime. Yet, differences also exist: whereas programmed death is the preferred solution chosen by aged and aggregation-stressed cells, collective suicide is seldom chosen by lawless societies. Significantly, there is no cellular equivalent for the role of familial care and of education in general, which is so crucial to the proper shaping of functional persons in the society. Unlike in the cell, humanism introduces a bias against radical solutions such as capital punishment, favouring crime prevention, reeducation and social reinsertion of criminals.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
Tiivistelmä: Kunnostusojituksen vaikutus rämemänniköiden kehitykseen
Resumo:
The study investigates the possibility to incorporate fracture intensity and block geometry as spatially continuous parameters in GIS-based systems. For this purpose, a deterministic method has been implemented to estimate block size (Bloc3D) and joint frequency (COLTOP). In addition to measuring the block size, the Bloc3D Method provides a 3D representation of the shape of individual blocks. These two methods were applied using field measurements (joint set orientation and spacing) performed over a large field area, in the Swiss Alps. This area is characterized by a complex geology, a number of different rock masses and varying degrees of metamorphism. The spatial variability of the parameters was evaluated with regard to lithology and major faults. A model incorporating these measurements and observations into a GIS system to assess the risk associated with rock falls is proposed. The analysis concludes with a discussion on the feasibility of such an application in regularly and irregularly jointed rock masses, with persistent and impersistent discontinuities.
Resumo:
Tiivistelmä: Vanhoilta metsäojitusalueilta valuvan veden ominaisuudet