977 resultados para Normal dispersion
Resumo:
This paper investigates the effect of varying presentation (click) rates in variance ratios for auditory brainstem responses (ABR).
Resumo:
This paper discusses a study to determine if profoundly hearing impaired children could identify acoustically normal speech patterns from abnormal speech patterns.
Resumo:
This paper discusses the fenestration operation and its effect on hearing.
Resumo:
This paper studies the use of a rank order scale to achieve a goal of normal loudness perception for a hearing-impaired person. The study compares loudness judgments in normal and hearing-impaired listeners.
Resumo:
This paper studies the relationship between hearing sensitivity and the presence of otoacoustic emissions by examining the variability of same ear emissions in a group of normal-hearing subjects.
Resumo:
This dissertation examines auditory perception and audio-visual reception in noise for both hearing-impaired and normal hearing persons, with a goal of determining some of the noise conditions under which amplified acoustic cues for speech can be beneficial to hearing-impaired persons.
Resumo:
This paper presents some normative data on the relation between the perceived loudness of third-octave bands of noise and that of broad-band noise. The study used normally-hearing listeners and was used as a control study for a parallel study done with hearing impaired listeners.
Resumo:
This paper compares the auditory steady state response (ASSR) thresholds with the click-evoked and tone burst auditory brainstem response (ABR) thresholds in their ability to predict known behavioral thresholds in normal-hearing adults.
Resumo:
The purpose of this study was to evaluate discrimination of angular velocity in individuals with normal vestibular function using a newly developed adaptive psychophysical measure. Vestibular psychophysical testing may complement existing clinical measures in diagnosing and treating patients with imbalance.
Resumo:
This Commentary attempts to discern the distinguishing features between the present euro crisis and the financial crisis brought on in the US by the subprime lending disaster and the ensuing collapse of banks and other financial institutions in 2007-08. It finds that whereas the US was able to bring its crisis to an end by socialising the dubious debt and stabilising its valuation so that it could migrate to other investors capable of bearing the risk, this pattern can be only partly repeated in the eurozone, where both debt socialisation and a return to normal risk assessment are more problematic.. It concludes, nevertheless, that the crisis should now abate somewhat given that most risk-averse institutions have by now sold their holdings of peripheral countries’ sovereign debt and especially in light of the ECB’s assurances that it will not allow the euro to disintegrate.
Resumo:
The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective.
Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0
Resumo:
Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.