932 resultados para Non-linear dynamic analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The large scale fading of wireless mobile communications links is modelled assuming the mobile receiver motion is described by a dynamic linear system in state-space. The geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A Wiener system subspace identification algorithm in conjunction with polynomial regression is used to identify a model from time-domain estimates of the field intensity assuming a multitude of emitters and an antenna array at the receiver end.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on integrated system optimisation and parameter estimation a method is described for on-line steady state optimisation which compensates for model-plant mismatch and solves a non-linear optimisation problem by iterating on a linear - quadratic representation. The method requires real process derivatives which are estimated using a dynamic identification technique. The utility of the method is demonstrated using a simulation of the Tennessee Eastman benchmark chemical process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition to a low-carbon economy urgently demands better information on the drivers of energy consumption. UK government policy has prioritized energy efficiency in the built stock as a means of carbon reduction, but the sector is historically information poor, particularly the non-domestic building stock. This paper presents the results of a pilot study that investigated whether and how property and energy consumption data might be combined for non-domestic energy analysis. These data were combined in a ‘Non-Domestic Energy Efficiency Database’ to describe the location and physical attributes of each property and its energy consumption. The aim was to support the generation of a range of energy-efficiency statistics for the industrial, commercial and institutional sectors of the non-domestic building stock, and to provide robust evidence for national energy-efficiency and carbon-reduction policy development and monitoring. The work has brought together non-domestic energy data, property data and mapping in a ‘data framework’ for the first time. The results show what is possible when these data are integrated and the associated difficulties. A data framework offers the potential to inform energy-efficiency policy formation and to support its monitoring at a level of detail not previously possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the Geosciences as the resolution and non-linearity of models are increased and more and more non-linear observation operators are being used. In this study, we look at the effect of relaxing the assumption of a Gaussian prior on the impact of observations within the data assimilation system. Three different measures of observation impact are studied: the sensitivity of the posterior mean to the observations, mutual information and relative entropy. The sensitivity of the posterior mean is derived analytically when the prior is modelled by a simplified Gaussian mixture and the observation errors are Gaussian. It is found that the sensitivity is a strong function of the value of the observation and proportional to the posterior variance. Similarly, relative entropy is found to be a strong function of the value of the observation. However, the errors in estimating these two measures using a Gaussian approximation to the prior can differ significantly. This hampers conclusions about the effect of the non-Gaussian prior on observation impact. Mutual information does not depend on the value of the observation and is seen to be close to its Gaussian approximation. These findings are illustrated with the particle filter applied to the Lorenz ’63 system. This article is concluded with a discussion of the appropriateness of these measures of observation impact for different situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was, within a sensitivity analysis framework, to determine if additional model complexity gives a better capability to model the hydrology and nitrogen dynamics of a small Mediterranean forested catchment or if the additional parameters cause over-fitting. Three nitrogen-models of varying hydrological complexity were considered. For each model, general sensitivity analysis (GSA) and Generalized Likelihood Uncertainty Estimation (GLUE) were applied, each based on 100,000 Monte Carlo simulations. The results highlighted the most complex structure as the most appropriate, providing the best representation of the non-linear patterns observed in the flow and streamwater nitrate concentrations between 1999 and 2002. Its 5% and 95% GLUE bounds, obtained considering a multi-objective approach, provide the narrowest band for streamwater nitrogen, which suggests increased model robustness, though all models exhibit periods of inconsistent good and poor fits between simulated outcomes and observed data. The results confirm the importance of the riparian zone in controlling the short-term (daily) streamwater nitrogen dynamics in this catchment but not the overall flux of nitrogen from the catchment. It was also shown that as the complexity of a hydrological model increases over-parameterisation occurs, but the converse is true for a water quality model where additional process representation leads to additional acceptable model simulations. Water quality data help constrain the hydrological representation in process-based models. Increased complexity was justifiable for modelling river-system hydrochemistry. Increased complexity was justifiable for modelling river-system hydrochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensemble clustering (EC) can arise in data assimilation with ensemble square root filters (EnSRFs) using non-linear models: an M-member ensemble splits into a single outlier and a cluster of M−1 members. The stochastic Ensemble Kalman Filter does not present this problem. Modifications to the EnSRFs by a periodic resampling of the ensemble through random rotations have been proposed to address it. We introduce a metric to quantify the presence of EC and present evidence to dispel the notion that EC leads to filter failure. Starting from a univariate model, we show that EC is not a permanent but transient phenomenon; it occurs intermittently in non-linear models. We perform a series of data assimilation experiments using a standard EnSRF and a modified EnSRF by a resampling though random rotations. The modified EnSRF thus alleviates issues associated with EC at the cost of traceability of individual ensemble trajectories and cannot use some of algorithms that enhance performance of standard EnSRF. In the non-linear regimes of low-dimensional models, the analysis root mean square error of the standard EnSRF slowly grows with ensemble size if the size is larger than the dimension of the model state. However, we do not observe this problem in a more complex model that uses an ensemble size much smaller than the dimension of the model state, along with inflation and localisation. Overall, we find that transient EC does not handicap the performance of the standard EnSRF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper develops a more precise specification and understanding of the process of national-level knowledge accumulation and absorptive capabilities by applying the reasoning and evidence from the firm-level analysis pioneered by Cohen and Levinthal (1989, 1990). In doing so, we acknowledge that significant cross-border effects due to the role of both inward and outward FDI exist and that assimilation of foreign knowledge is not only confined to catching-up economies but is also carried out by countries at the frontier-sharing phase. We postulate a non-linear relationship between national absorptive capacity and the technological gap, due to the effects of the cumulative nature of the learning process and the increase in complexity of external knowledge as the country approaches the technological frontier. We argue that national absorptive capacity and the accumulation of knowledge stock are simultaneously determined. This implies that different phases of technological development require different strategies. During the catching-up phase, knowledge accumulation occurs predominately through the absorption of trade and/or inward FDI-related R&D spillovers. At the pre-frontier-sharing phase onwards, increases in the knowledge base occur largely through independent knowledge creation and actively accessing foreign-located technological spillovers, inter alia through outward FDI-related R&D, joint ventures and strategic alliances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine to what degree we can expect to obtain accurate temperature trends for the last two decades near the surface and in the lower troposphere. We compare temperatures obtained from surface observations and radiosondes as well as satellite-based measurements from the Microwave Soundings Units (MSU), which have been adjusted for orbital decay and non-linear instrument-body effects, and reanalyses from the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centre for Environmental Prediction (NCEP). In regions with abundant conventional data coverage, where the MSU has no major influence on the reanalysis, temperature anomalies obtained from microwave sounders, radiosondes and from both reanalyses agree reasonably. Where coverage is insufficient, in particular over the tropical oceans, large differences are found between the MSU and either reanalysis. These differences apparently relate to changes in the satellite data availability and to differing satellite retrieval methodologies, to which both reanalyses are quite sensitive over the oceans. For NCEP, this results from the use of raw radiances directly incorporated into the analysis, which make the reanalysis sensitive to changes in the underlying algorithms, e.g. those introduced in August 1992. For ERA, the bias-correction of the one-dimensional variational analysis may introduce an error when the satellite relative to which the correction is calculated is biased itself or when radiances change on a time scale longer than a couple of months, e.g. due to orbit decay. ERA inhomogeneities are apparent in April 1985, October/November 1986 and April 1989. These dates can be identified with the replacements of satellites. It is possible that a negative bias in the sea surface temperatures (SSTs) used in the reanalyses may have been introduced over the period of the satellite record. This could have resulted from a decrease in the number of ship measurements, a concomitant increase in the importance of satellite-derived SSTs, and a likely cold bias in the latter. Alternately, a warm bias in SSTs could have been caused by an increase in the percentage of buoy measurements (relative to deeper ship intake measurements) in the tropical Pacific. No indications for uncorrected inhomogeneities of land surface temperatures could be found. Near-surface temperatures have biases in the boundary layer in both reanalyses, presumably due to the incorrect treatment of snow cover. The increase of near-surface compared to lower tropospheric temperatures in the last two decades may be due to a combination of several factors, including high-latitude near-surface winter warming due to an enhanced NAO and upper-tropospheric cooling due to stratospheric ozone decrease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this lecture is to review recent development in data analysis, initialization and data assimilation. The development of 3-dimensional multivariate schemes has been very timely because of its suitability to handle the many different types of observations during FGGE. Great progress has taken place in the initialization of global models by the aid of non-linear normal mode technique. However, in spite of great progress, several fundamental problems are still unsatisfactorily solved. Of particular importance is the question of the initialization of the divergent wind fields in the Tropics and to find proper ways to initialize weather systems driven by non-adiabatic processes. The unsatisfactory ways in which such processes are being initialized are leading to excessively long spin-up times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with development of improved management practices in indigenous chicken production systems in a research process that includes participatory approaches with smallholder farmers and other stakeholders in Kenya. The research process involved a wide range of activities that included on-station experiments, field surveys, stakeholder consultations in workshops, seminars and visits, and on-farm farmer participatory research to evaluate the effect of some improved management interventions on production performance of indigenous chickens. The participatory research was greatly informed from collective experiences and lessons of the previous activities. The on-station studies focused on hatching, growth and nutritional characteristics of the indigenous chickens. Four research publications from these studies are included in this thesis. Quantitative statistical analyses were applied and they involved use of growth models estimated with non-linear regressions for the growth characteristics, chi-square determinations to investigate differences among different reciprocal crosses of indigenous chickens and general linear models and covariance determination for the nutrition study. The on-station studies brought greater understanding of performance and production characteristics of indigenous chickens and the influence of management practices on these characteristics. The field surveys and stakeholder consultations helped in understanding the overarching issues affecting the productivity of the indigenous chickens systems and their place in the livelihoods of smallholder farmers. These activities created strong networking opportunities with stakeholders from a wide spectrum. The on-farm farmer participatory research involved selection of 200 farmers in five regions followed by training and introduction of interventions on improved management practices which included housing, vaccination, deworming and feed supplementation. Implementation and monitoring was mainly done by individual farmers continuously for close to one and half years. Six quarterly visits to the farms were made by the research team to monitor and provide support for on-going project activities. The data collected has been analysed for 5 consecutive 3-monthly periods. Descriptive and inferential statistics were applied to analyse the data collected involving treatment applications, production characteristics and flock demography characteristics. Out of the 200 farmers initially selected, 173 had records on treatment applications and flock demography characteristics while 127 farmers had records on production characteristics. The demographic analysis with a dissimilarity index of flock size produced 7 distinct farm groups from among the 173 farms. Two of these farm groups were represented in similar numbers in each of the five regions. The research process also involved a number of dissemination and communication strategies that have brought the process and project outcomes into the domain of accessibility by wider readership locally and globally. These include workshops, seminars, field visits and consultations, local and international conferences, electronic conferencing, publications and personal communication via emailing and conventional posting. A number of research and development proposals were also developed based on the knowledge and experiences gained from the research process. The thesis captures the research process activities and outcomes in 8 chapters which include in ascending order – introduction, theoretical concepts underpinning FPR, research methodology and process, on-station research output, FPR descriptive statistical analysis, FPR inferential statistical analysis on production characteristics, FPR demographic analysis and conclusions. Various research approaches both quantitative and qualitative have been applied in the research process indicating the possibilities and importance of combining both systems for greater understanding of issues being studied. In our case, participatory studies of the improved management of indigenous chickens indicates their potential importance as livelihood assets for poor people.