908 resultados para Non-dominated sorting genetic algorithms
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.
Resumo:
La polykystose rénale autosomique dominante (ADPKD) est une des maladies génétiques les plus communes. ADPKD se manifeste le plus souvent au stade adulte par la présence de kystes rénaux, et bien souvent de kystes hépatiques, avec une progression très variable. ADPKD mène à une insuffisance rénale: les seuls recours sont la dialyse puis la transplantation rénale. Les mutations dispersées sur les gènes PKD1 (majoritairement; la protéine polycystine-1, PC1) et PKD2 (la protéine polycystine-2, PC2) sont responsables de l’ADPKD. Le mécanisme pathogénétique de perte de fonction (LOF) et donc d’un effet récessif cellulaire est évoqué comme causatif de l’ADPKD. LOF est en effet supporté par les modèles murins d’inactivation de gènes PKD1/PKD2, qui développent de kystes, quoique in utéro et avec une rapidité impressionnante dans les reins mais pas dans le foie. Malgré de nombreuses études in vitro, le rôle de PC1/PC2 membranaire/ciliaire reste plutôt hypothétique et contexte-dépendant. Ces études ont associé PC1/PC2 à une panoplie de voies de signalisation et ont souligné une complexité structurelle et fonctionnelle exceptionnelle, dont l’implication a été testée notamment chez les modèles de LOF. Toutefois, les observations patho-cellulaires chez l’humain dont une expression soutenue, voire augmentée, de PKD1/PC1 et l’absence de phénotypes extrarénaux particuliers remet en question l’exclusivité du mécanisme de LOF. Il était donc primordial 1) d’éclaircir le mécanisme pathogénétique, 2) de générer des outils in vivo authentiques d’ADPKD en terme d’initiation et de progression de la maladie et 3) de mieux connaitre les fonctions des PC1/PC2 indispensables pour une translation clinique adéquate. Cette thèse aborde tous ces points. Tout d’abord, nous avons démontré qu’une augmentation de PKD1 endogène sauvage, tout comme chez l’humain, est pathogénétique en générant et caractérisant en détail un modèle murin transgénique de Pkd1 (Pkd1TAG). Ce modèle reproduit non seulement les caractéristiques humaines rénales, associées aux défauts du cil primaire, mais aussi extrarénales comme les kystes hépatiques. La sévérité du phénotype corrèle avec le niveau d’expression de Pkd1 ce qui supporte fortement un modèle de dosage. Dans un deuxième temps, nous avons démontré par les études de complémentations génétiques que ces deux organes reposent sur une balance du clivage GPS de Pc1, une modification post-traductionelle typique des aGPCR, et dont l’activité et l’abondance semblent strictement contrôlées. De plus, nous avons caractérisé extensivement la biogénèse de Pc1 et de ses dérivés in vivo générés suite au clivage GPS. Nous avons identifié une toute nouvelle forme et prédominante à la membrane, la forme Pc1deN, en plus de confirmer deux fragments N- et C-terminal de Pc1 (NTF et CTF, respectivement) qui eux s’associent de manière non-covalente. Nous avons démontré de façon importante que le trafic de Pc1deN i.e., une forme NTF détachée du CTF, est toutefois dépendant de l’intégrité du fragment CTF in vivo. Par la suite, nous avons généré un premier modèle humanisant une mutation PKD1 non-sens tronquée au niveau du domaine NTF(E3043X) en la reproduisant chez une souris transgénique (Pkd1extra). Structurellement, cette mutation, qui mimique la forme Pc1deN, s’est également avérée causative de PKD. Le modèle Pkd1extra a permis entre autre de postuler l’existence d’une cross-interaction entre différentes formes de Pc1. De plus, nos deux modèles murins sont tous les deux associés à des niveaux altérés de c-Myc et Pc2, et soutiennent une implication réelle de ces derniers dans l’ADPKD tou comme une interaction fonctionnelle entre les polycystines. Finalement, nous avons démontré un chevauchement significatif entre l’ADPKD et le dommage rénal aigüe (ischémie/AKI) dont une expression augmentée de Pc1 et Pc2 mais aussi une stimulation de plusieurs facteurs cystogéniques tel que la tubérine, la β-caténine et l’oncogène c-Myc. Nos études ont donc apporté des évidences cruciales sur la contribution du gène dosage dans l’ADPKD. Nous avons développé deux modèles murins qui serviront d’outil pour l’analyse de la pathologie humaine ainsi que pour la validation préclinique ADPKD. L’identification d’une nouvelle forme de Pc1 ajoute un niveau de complexité supplémentaire expliquant en partie une capacité de régulation de plusieurs voies de signalisation par Pc1. Nos résultats nous amènent à proposer de nouvelles approches thérapeutiques: d’une part, le ciblage de CTF i.e., de style chaperonne, et d’autre part le ciblage de modulateurs intracellulaires (c-Myc, Pc2, Hif1α). Ensemble, nos travaux sont d’une importance primordiale du point de vue informatif et pratique pour un avancement vers une thérapie contre l’ADPKD. Le partage de voies communes entre AKI et ADPKD ouvre la voie aux approches thérapeutiques parallèles pour un traitement assurément beaucoup plus rapide.
Resumo:
La thèse est divisée principalement en deux parties. La première partie regroupe les chapitres 2 et 3. La deuxième partie regroupe les chapitres 4 et 5. La première partie concerne l'échantillonnage de distributions continues non uniformes garantissant un niveau fixe de précision. Knuth et Yao démontrèrent en 1976 comment échantillonner exactement n'importe quelle distribution discrète en n'ayant recours qu'à une source de bits non biaisés indépendants et identiquement distribués. La première partie de cette thèse généralise en quelque sorte la théorie de Knuth et Yao aux distributions continues non uniformes, une fois la précision fixée. Une borne inférieure ainsi que des bornes supérieures pour des algorithmes génériques comme l'inversion et la discrétisation figurent parmi les résultats de cette première partie. De plus, une nouvelle preuve simple du résultat principal de l'article original de Knuth et Yao figure parmi les résultats de cette thèse. La deuxième partie concerne la résolution d'un problème en théorie de la complexité de la communication, un problème qui naquit avec l'avènement de l'informatique quantique. Étant donné une distribution discrète paramétrée par un vecteur réel de dimension N et un réseau de N ordinateurs ayant accès à une source de bits non biaisés indépendants et identiquement distribués où chaque ordinateur possède un et un seul des N paramètres, un protocole distribué est établi afin d'échantillonner exactement ladite distribution.
Resumo:
The objective of present investigation was to study the population genetic structure of S. longiceps by applying three different basic population genetic techniques such as cytogenetics, non-enzymatic biochemicalgenetics (general protein) and morphomeristics/metrics.
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
In a sigma-delta analog to digital (A/D) As most of the sigma-delta ADC applications require converter, the most computationally intensive block is decimation filters with linear phase characteristics, the decimation filter and its hardware implementation symmetric Finite Impulse Response (FIR) filters are may require millions of transistors. Since these widely used for implementation. But the number of FIR converters are now targeted for a portable application, filter coefficients will be quite large for implementing a a hardware efficient design is an implicit requirement. narrow band decimation filter. Implementing decimation In this effect, this paper presents a computationally filter in several stages reduces the total number of filter efficient polyphase implementation of non-recursive coefficients, and hence reduces the hardware complexity cascaded integrator comb (CIC) decimators for and power consumption [2]. Sigma-Delta Converters (SDCs). The SDCs are The first stage of decimation filter can be operating at high oversampling frequencies and hence implemented very efficiently using a cascade of integrators require large sampling rate conversions. The filtering and comb filters which do not require multiplication or and rate reduction are performed in several stages to coefficient storage. The remaining filtering is performed reduce hardware complexity and power dissipation. either in single stage or in two stages with more complex The CIC filters are widely adopted as the first stage of FIR or infinite impulse response (IIR) filters according to decimation due to its multiplier free structure. In this the requirements. The amount of passband aliasing or research, the performance of polyphase structure is imaging error can be brought within prescribed bounds by compared with the CICs using recursive and increasing the number of stages in the CIC filter. The non-recursive algorithms in terms of power, speed and width of the passband and the frequency characteristics area. This polyphase implementation offers high speed outside the passband are severely limited. So, CIC filters operation and low power consumption. The polyphase are used to make the transition between high and low implementation of 4th order CIC filter with a sampling rates. Conventional filters operating at low decimation factor of '64' and input word length of sampling rate are used to attain the required transition '4-bits' offers about 70% and 37% of power saving bandwidth and stopband attenuation. compared to the corresponding recursive and Several papers are available in literature that deals non-recursive implementations respectively. The same with different implementations of decimation filter polyphase CIC filter can operate about 7 times faster architecture for sigma-delta ADCs. Hogenauer has than the recursive and about 3.7 times faster than the described the design procedures for decimation and non-recursive CIC filters.
Resumo:
An Overview of known spatial clustering algorithms The space of interest can be the two-dimensional abstraction of the surface of the earth or a man-made space like the layout of a VLSI design, a volume containing a model of the human brain, or another 3d-space representing the arrangement of chains of protein molecules. The data consists of geometric information and can be either discrete or continuous. The explicit location and extension of spatial objects define implicit relations of spatial neighborhood (such as topological, distance and direction relations) which are used by spatial data mining algorithms. Therefore, spatial data mining algorithms are required for spatial characterization and spatial trend analysis. Spatial data mining or knowledge discovery in spatial databases differs from regular data mining in analogous with the differences between non-spatial data and spatial data. The attributes of a spatial object stored in a database may be affected by the attributes of the spatial neighbors of that object. In addition, spatial location, and implicit information about the location of an object, may be exactly the information that can be extracted through spatial data mining
Resumo:
There are a number of genes involved in the regulation of functional process in marine bivalves. In the case of pearl oyster, some of these genes have major role in the immune/defence function and biomineralization process involved in the pearl formation in them. As secondary filter feeders, pearl oysters are exposed to various kinds of stressors like bacteria, viruses, pesticides, industrial wastes, toxic metals and petroleum derivatives, making susceptible to diseases. Environmental changes and ambient stress also affect non-specific immunity, making the organisms vulnerable to infections. These stressors can trigger various cellular responses in the animals in their efforts to counteract the ill effects of the stress on them. These include the expression of defence related genes which encode factors such as antioxidant genes, pattern recognition receptor proteins etc. One of the strategies to combat these problems is to get insight into the disease resistance genes, and use them for disease control and health management. Similarly, although it is known that formation of pearl in molluscs is mediated by specialized proteins which are in turn regulated by specific genes encoding them, there is a paucity of sufficient information on these genes.In view of the above facts, studies on the defence related and pearl forming genes of the pearl oyster assumes importance from the point of view of both sustainable fishery management and aquaculture. At present, there is total lack of sufficient knowledge on the functional genes and their expressions in the Indian pearl oyster Pinctada fucata. Hence this work was taken up to identify and characterize the defence related and pearl forming genes, and study their expression through molecular means, in the Indian pearl oyster Pinctada fucata which are economically important for aquaculture at the southeast coast of India. The present study has successfully carried out the molecular identification, characterization and expression analysis of defence related antioxidant enzyme genes and pattern recognition proteins genes which play vital role in the defence against biotic and abiotic stressors. Antioxidant enzyme genes viz., Cu/Zn superoxide dismutase (Cu/Zn SOD), glutathione peroxidise (GPX) and glutathione-S-transferase (GST) were studied. Concerted approaches using the various molecular tools like polymerase chain reaction (PCR), random amplification of cDNA ends (RACE), molecular cloning and sequencing have resulted in the identification and characterization of full length sequences (924 bp) of the Cu/Zn SOD, most important antioxidant enzyme gene. BLAST search in NCBI confirmed the identity of the gene as Cu/Zn SOD. The presence of the characteristic amino acid sequences such as copper/zinc binding residues, family signature sequences and signal peptides were found out. Multiple sequence alignment comparison and phylogenetic analysis of the nucleotide and amino acid sequences using bioinformatics tools like BioEdit,MEGA etc revealed that the sequences were found to contain regions of diversity as well as homogeneity. Close evolutionary relationship between P. fucata and other aquatic invertebrates was revealed from the phylogenetic tree constructed using SOD amino acid sequence of P. fucata and other invertebrates as well as vertebrates
Resumo:
Presently different audio watermarking methods are available; most of them inclined towards copyright protection and copy protection. This is the key motive for the notion to develop a speaker verification scheme that guar- antees non-repudiation services and the thesis is its outcome. The research presented in this thesis scrutinizes the field of audio water- marking and the outcome is a speaker verification scheme that is proficient in addressing issues allied to non-repudiation to a great extent. This work aimed in developing novel audio watermarking schemes utilizing the fun- damental ideas of Fast-Fourier Transform (FFT) or Fast Walsh-Hadamard Transform (FWHT). The Mel-Frequency Cepstral Coefficients (MFCC) the best parametric representation of the acoustic signals along with few other key acoustic characteristics is employed in crafting of new schemes. The au- dio watermark created is entirely dependent to the acoustic features, hence named as FeatureMark and is crucial in this work. In any watermarking scheme, the quality of the extracted watermark de- pends exclusively on the pre-processing action and in this work framing and windowing techniques are involved. The theme non-repudiation provides immense significance in the audio watermarking schemes proposed in this work. Modification of the signal spectrum is achieved in a variety of ways by selecting appropriate FFT/FWHT coefficients and the watermarking schemes were evaluated for imperceptibility, robustness and capacity char- acteristics. The proposed schemes are unequivocally effective in terms of maintaining the sound quality, retrieving the embedded FeatureMark and in terms of the capacity to hold the mark bits. Robust nature of these marking schemes is achieved with the help of syn- chronization codes such as Barker Code with FFT based FeatureMarking scheme and Walsh Code with FWHT based FeatureMarking scheme. An- other important feature associated with this scheme is the employment of an encryption scheme towards the preparation of its FeatureMark that scrambles the signal features that helps to keep the signal features unreve- laed. A comparative study with the existing watermarking schemes and the ex- periments to evaluate imperceptibility, robustness and capacity tests guar- antee that the proposed schemes can be baselined as efficient audio water- marking schemes. The four new digital audio watermarking algorithms in terms of their performance are remarkable thereby opening more opportu- nities for further research.
Resumo:
Little is known about plant biodiversity, irrigation management and nutrient fluxes as criteria to assess the sustainability of traditional irrigation agriculture in eastern Arabia. Therefore interdisciplinary studies were conducted over 4 yrs on flood-irrigated fields dominated by wheat (Triticum spp.), alfalfa (Medicago sativa L.) and date palm (Phoenix dactylifera L.) in two mountain oases of northern Oman. In both oases wheat landraces consisted of varietal mixtures comprising T. aestivum and T. durum of which at least two botanical varieties were new to science. During irrigation cycles of 6-9 days on an alfalfa-planted soil, volumetric water contents ranged from 30-13%. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare annual surpluses of 131 kg N, 37 kg P and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 yr^-1 much higher at Balad Seet than with 84 kg N, 14 kg P and 91 kg K ha^-1 yr^-1 at Maqta. The results show that the sustainability of these irrigated landuse systems depends on a high quality of the irrigation water with low Na but high CaCO3, intensive recycling of manure and an elaborate terrace structure with a well tailored water management system that allows adequate drainage.
Resumo:
Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.
Resumo:
Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.
Resumo:
In this report, we discuss the application of global optimization and Evolutionary Computation to distributed systems. We therefore selected and classified many publications, giving an insight into the wide variety of optimization problems which arise in distributed systems. Some interesting approaches from different areas will be discussed in greater detail with the use of illustrative examples.
Resumo:
The problem of the relevance and the usefulness of extracted association rules is of primary importance because, in the majority of cases, real-life databases lead to several thousands association rules with high confidence and among which are many redundancies. Using the closure of the Galois connection, we define two new bases for association rules which union is a generating set for all valid association rules with support and confidence. These bases are characterized using frequent closed itemsets and their generators; they consist of the non-redundant exact and approximate association rules having minimal antecedents and maximal consequences, i.e. the most relevant association rules. Algorithms for extracting these bases are presented and results of experiments carried out on real-life databases show that the proposed bases are useful, and that their generation is not time consuming.