986 resultados para Noise pollution.
Resumo:
In this paper, source apportionment techniques are employed to identify and quantify the major particle pollution source classes affecting a monitoring site in metropolitan Boston, MA. A Principal Component Analysis (PCA) of paniculate elemental data allows the estimation of mass contributions for five fine mass panicle source classes (soil, motor vehicle, coal related, oil and salt aerosols), and six coarse panicle source classes (soil, motor vehicle, refuse incineration, residual oil, salt and sulfate aerosols). Also derived are the elemental characteristics of those source aerosols and their contributions to the total recorded elemental concentrations (i.e. an elemental mass balance). These are estimated by applying a new approach to apportioning mass among various PCA source components: the calculation of Absolute Principal Component Scores, and the subsequent regression of daily mass and elemental concentrations on these scores.
Resumo:
Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal concentrations at unsampled sites. The performances of interpolation methods (inverse distance weighting, local polynomial, ordinary kriging and radial basis functions) were assessed and compared using the root mean square error for cross validation. The results indicated that all interpolation methods provided a high prediction accuracy of the mean concentration of soil heavy metals. However, the classic method based on percentages of polluted samples, gave a pollution area 23.54-41.92% larger than that estimated by interpolation methods. The difference in contaminated area estimation among the four methods reached 6.14%. According to the interpolation results, the spatial uncertainty of polluted areas was mainly located in three types of region: (a) the local maxima concentration region surrounded by low concentration (clean) sites, (b) the local minima concentration region surrounded with highly polluted samples; and (c) the boundaries of the contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present study reports an application of the searching combination moving window partial least squares (SCMWPLS) algorithm to the determination of ethenzamide and acetoaminophen in quaternary powdered samples by near infrared (NIR) spectroscopy. Another purpose of the study was to examine the instrumentation effects of spectral resolution and signal-to-noise ratio of the Buchi NIRLab N-200 FT-NIR spectrometer equipped with an InGaAs detector. The informative spectral intervals of NIR spectra of a series of quaternary powdered mixture samples were first located for ethenzamide and acetoaminophen by use of moving window partial least squares regression (MWPLSR). Then, these located spectral intervals were further optimised by SCMWPLS for subsequent partial least squares (PLS) model development. The improved results are attributed to both the less complex PLS models and to higher accuracy of predicted concentrations of ethenzamide and acetoaminophen in the optimised informative spectral intervals that are featured by NIR bands. At the same time, SCMWPLS is also demonstrated as a viable route for wavelength selection.
Resumo:
The present paper deals with the distribution patterns of heavy metals and the associated influencing factors in the Yalu River Estuary and its adjacent coastal waters. Based upon the analysis of the surficial and core sediments measurements, the pollution of heavy metal and potential ecological risk were evaluated. The burial flux and contents of heavy metals (except for copper) have been continuously increasing since the 1920s. Therefore, the gross potential ecological risk for the sediments was high or very high, and the study area was endangered by heavy metals contamination. Heavy metals originated mainly from upstream pollutant input, correlation analysis showed that chromium, nickel, zinc, cadmium, lead, arsenic, and mercury in the sediments of the middle and west channels as well as the sea area of the western Yalu River Estuary concentrations were most probably derived from similar sources. In contrast, the metal of copper most probably originated from sources different from the other metals. Preliminary studies indicate that copper contamination was most likely the result of emission from mining activities situated at the upstream of the river. The contents of heavy metals in the sediments of estuarine turbidity maximum zone of Yalu River were larger than those of any other areas in the middle channel. With large portion of fine sediments, weaker hydrodynamics, and richer sources of heavy metals, the sediments of the west channel, were even more enriched with heavy metals than those of the middle channel.
Resumo:
Given n noisy observations g; of the same quantity f, it is common use to give an estimate of f by minimizing the function Eni=1(gi-f)2. From a statistical point of view this corresponds to computing the Maximum likelihood estimate, under the assumption of Gaussian noise. However, it is well known that this choice leads to results that are very sensitive to the presence of outliers in the data. For this reason it has been proposed to minimize the functions of the form Eni=1V(gi-f), where V is a function that increases less rapidly than the square. Several choices for V have been proposed and successfully used to obtain "robust" estimates. In this paper we show that, for a class of functions V, using these robust estimators corresponds to assuming that data are corrupted by Gaussian noise whose variance fluctuates according to some given probability distribution, that uniquely determines the shape of V.