965 resultados para Nitrogen cicle
Resumo:
Ethylene was polymerized using a combination of Ni(diimine)Cl-2 (1) (diimine = 1,4-bis(2,6-di-isopropylphenyl)-acenaphthenediimine) and {Tp(Ms)*} TiCl3 (2) (Tp(Ms)* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) compounds in the presence of methyl-aluminoxane (MAO) at 30 degrees C. The productivity reaches a maximum at X-Ni = 0.75 (1400 kg of PE/mol[M] . h), and the produced polyethylene (PE) showed maximal melt flow index (0.13 g/10 min) and minimal intrinsic viscosity (2.24 dL/g) compared to polyethylenes obtained with different values of nickel loading fractions (X-Ni). Productivity intrinsic viscosity data, as well as melt flow index measurements markedly depend upon the content of the late transition metal, thus suggesting a synergic effect between nickel and titanium catalysts.
Resumo:
In this work films were produced by the plasma enhanced chemical vapor deposition (PECVD) of titanium tetraisopropoxide-oxygen-helium mixtures and irradiated with 150 keV singly-charged nitrogen ions (N(+)) at fluences, phi, between 10(14) and 10(16) cm(-2). Irradiation resulted in compaction, which reached about 40% (measured via the film thickness) at the highest fluence. Infrared reflection-absorption spectroscopy (IRRAS) revealed the presence of Ti-O bonds in all films. Both O-H and C-H groups were present in the as-deposited films, but the density of each of these decreased with increasing phi and was absent at high phi, indicating a loss of hydrogen. X-ray photoelectron spectroscopy (XPS) analyses revealed an increase in the C to Ti atomic ratio as phi increased, while the O to Ti ratio hardly altered, remaining at around 2.8. The optical gap of the films, derived from data obtained by ultraviolet-visible spectroscopy (UVS), remained at about 3.6 eV for all fluences except the highest, for which an abrupt fall to around 1.0 eV was observed. For the irradiated films, the electrical conductivity, measured using the two-point method, showed a systematic increase with increasing phi. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper evaluates emissions to the atmosphere of biologically available nitrogen compounds in a region characterized by intensive sugar cane biofuel ethanol production. Large emissions of NH(3) and NO,, as well as particulate nitrate and ammonium, occur at the harvest when the crop is burned, with the amount of nitrogen released equivalent to similar to 35% of annual fertilizer-N application. Nitrogen oxides concentrations show a positive association with fire frequency, indicating that biomass burning is a major emission source, with mean concentrations of NO, doubling in the dry season relative to the wet season. During the dry season biomass burning is a source of NH3, with other sources (wastes, soil, biogenic) predominant during the wet season. Estimated NO(2)-N, NH(3)-N, NO(3)(-)-N and NH(4)(+)-N emission fluxes from sugar cane burning in a planted area,of ca. 2.2 x 10(6) ha are 11.0, 1.1, 0.2, and 1.2 Gg N yr(-1), respectively.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Forage plants, particularly the Brachiaria genus, are the main source of nutrients for cattle and are at times the only feed offered. The concentration of elements in the plant is related to the soil, fertilization, climate, season, variety, and cultural practices. An experiment on dystrophic Red-Yellow Latosol soil in Aracatuba, São Paulo was performed to evaluate the effects of the doses and sources of nitrogen fertilizers on the chemical properties of the soil and the dry matter yield of the grass Brachiaria brizantha cv. Xaraes. A randomized block design was employed involving three replicates in a 3 x 3 factorial, with three doses (100, 200 and 400 kg ha(-1) year(-1)) and three sources (Ajifer (R) L40, ammonium sulfate and urea) of nitrogen and a control treatment without nitrogen (zero). The greatest effects on the chemical properties of the soil as a function of nitrogen fertilization in the Xaraes grass were observed in the topsoil. The use of Ajifer (R) L40 and ammonium sulfate as sources of nitrogen had similar effects, with an increase in the sulfur content and a reduction in the soil pH at the superficial layer. The use of the fertilizers Ajifer (R) L40, ammonium sulfate and urea did not affect the micronutrient contents, except for Fe and Mn, and did not alter the sodium concentration or electrical conductivity of the soil. The dry matter yield of Xaraes grass was similar for all three nitrogen sources.
Resumo:
A field experiment was carried out in São Paulo State, Brazil, with the objective of investigating the response of 'Nanicao' banana (Musa AAA Cavendish subgroup) to nitrogen and potassium fertilization under irrigated and non-irrigated conditions during two crop seasons. The effects of cropping on some soil chemical properties were also investigated. A split-plot design was used with irrigation (micro-sprinkler) and no irrigation applied to main plots, and a combination of four rates of N (0, 200, 400 and 800 kg N ha-1) and K (0, 300, 600 and 900 kg K2O ha-1) as the sub-plot treatments. Irrigation caused a significant increase in fruit yield and determined the response to N and K fertilizers. In spite of a high level of exchangeable K, a positive response to K application was observed on the plant crop in non-irrigated plants. Fruit yield was impaired by N application in the plant crop (1st cycle). A positive response to N application was observed in the 2nd cycle. Soil pH decreased with increasing N rates. Exchangeable K was significantly reduced due to crop exhaustion.
Resumo:
Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.
Resumo:
A comparative study using small-angle x-ray scattering (SAXS) and nitrogen adsorption has been carried out in the structural characterization of silica xerogels and aerogels, obtained from tetraethoxysilane sonohydrolysis. The specific surface and the mean pore size as measured by both the techniques were found to be in notable agreement in all cases for aerogels and xerogels. According to the SAXS data, aerogels at 500 °C exhibit a mass fractal structure with fractal dimension D∼2.4 in the range between the correlation length ξ∼5.3 nm and a∼0.75 nm. An experimental method to probe the mass fractal structure of aerogels from exclusively nitrogen adsorption isotherms has been presented. For aerogels at 500 °C, we have found D∼2.4 in the range between the pore width 2rξ∼33 nm and 2ra∼4.5 nm, which is in notable agreement with the SAXS results (D ∼2.4, ξ∼5.3 nm, a∼0.75 nm) if we assign the pore width 2r probed by the Kelvin equation in the adsorption method to the Bragg distance 2π/q associated to the correlation length 1/q probed by SAXS.
Resumo:
Nitrogen ions were implanted by plasma immersion in Kapton, Mylar and polypropylene, with the objective of forming a diamond-like carbon layer on these polymers. The Raman spectrum of the implanted polypropylene showed typical Diamond-Like Carbon (DLC) graphite (G) and disorder (D) peaks, with an sp 3/sp2 hybridization ratio of approximately 0.4 to 0.6. The XPS analysis of the three implanted polymers also showed peaks of C-C and N-C bonds in the sp3 configuration, with hybridization ratios in the same range as the Raman result. The implanted polymers were exposed to oxygen plasma to test the resistance of the polymers to oxygen degradation. Mass loss rate results, however, showed that the DLC layer formed is not sufficiently robust for this application. Nevertheless, the layer formed can be suitable for other applications such as in gas barriers in beverage containers. Further study of implantation conditions may improve the quality of the DLC layer.
Resumo:
The objective of the present research was to evaluate effects of different strip weed control associated with nitrogen fertilizer on corn applied after planting. The experiment was set and conducted in Botucatu, São Paulo State, Brazil, and the hybrid planted was Dekalb 333-B. A completely randomized block design with four replications was used. Experimental plots were disposed as a factorial scheme 2 x 2 x 4, constituted by two types of weeding on row (with or without manual hoeing), two types of weeding on inter-row (with or without manual hoeing), and four nitrogen levels applied after planting (00, 60, 90, and 120 kg ha-1). Plots were composed by six rows with 5 m length. Nitrogen fertilizer was applied at 35 days after emergence (d.a.e). For weed community it was evaluated: weed density, dominancy, frequency, and relative importance. The main weed species were: Brachiaria plantiginea, Amaranthus retroflexus, Bidens pilosa, Cyperus rotunds, Brachiaria decumbens, Euphorbia heterofila, Oxalis latifolia, Acanthospermum hispidum, Commelina benghalensis. It was evaluated corn height at 40 and 100 d.a.e., first ear insertion height at 100 d.a.e., and final grain yield at harvesting. Plants and first ear insertion height were affected when nitrogen fertilizer was not applied. Treatments without weed control showed that weed interfered negatively with plants height. There were no correlation between weeds and nitrogen fertilizer for all parameters evaluated. Parcels without weed showed the highest ear weights and final grain production. Treatments that received nitrogen fertilizer, independently of studied arrangement, provided higher yields.
Resumo:
Background: Lung deposition of intravenous cephalosporins is low. The lung deposition of equivalent doses of ceftazidime administered either intravenously or by ultrasonic nebulization using either nitrogen-oxygen or helium-oxygen as the carrying gas of the aerosol was compared in ventilated piglets with and without experimental bronchopneumonia. Methods: Five piglets with noninfected lungs and 5 piglets with Pseudomonas aeruginosa experimental bronchopneumonia received 33 mg/kg ceftazidime intravenously. Ten piglets with noninfected lungs and 10 others with experimental P. aeruginosa bronchopneumonia received 50 mg/kg ceftazidime by ultrasonic nebulization. In each group, the ventilator was operated in half of the animals with a 65%/35% helium-oxygen or nitrogen-oxygen mixture. Animals were killed, and multiple lung specimens were sampled for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography. Results: As compared with intravenous administration, nebulization of ceftazidime significantly increased lung tissue concentrations (17 ± 13 vs. 383 ± 84 μg/g in noninfected piglets and 10 ± 3 vs. 129 ± 108 μg/g in piglets with experimental bronchopneumonia; P < 0.001). The use of a 65%/35% helium-oxygen mixture induced a 33% additional increase in lung tissue concentrations in noninfected piglets (576 ± 141 μg/g; P < 0.001) and no significant change in infected piglets (111 ± 104 μg/g). Conclusion: Nebulization of ceftazidime induced a 5- to 30-fold increase in lung tissue concentrations as compared with intravenous administration. Using a helium-oxygen mixture as the carrying gas of the aerosol induced a substantial additional increase in lung deposition in noninfected piglets but not in piglets with experimental bronchopneumonia. © 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.
Resumo:
Ti-6Al-4V samples have been treated by PHI processing at different temperatures (400-800°C), treatment time (30-150 min) and plasma potential (100 and 420 V). Hardness measurements results showed an enhancement of the hardness for all implanted samples. XRD results detected the Ti 2N phase and the best corrosion resistance was found for the samples processed at higher temperature and lower PIII time.
Resumo:
The dinuclear azido-palladium(II) complex [Pd2(N3)4(PPh3)2(μ-ted)], where PPh3 = triphenylphosphine and ted = triethylenediamine, was synthesized and characterized by single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 11.5875(2)Å, b = 13.0817(3)Å, c = 15.2618(3)Å, α = 93.306(2)°, β =110.040(1)°, γ = 98.486(1)°, V = 2134.95(8)Å3, Z = 2. Each Pd(II) center displays a distorted squareplanar coordination environment formed by two N atoms from two trans terminally coordinated azido groups, one P atom from the phosphine and one N atom from the bridging ted ligand. 2008 © The Japan Society for Analytical Chemistry.