953 resultados para Niobium oxides
Resumo:
Poorly characterized phases (PCP's) may constitute up to 30 volume percent of some C2M carbonaceous chondrite matrices [1] and are an important key to an understanding of matrix evolution. PCPs are usually fine-grained (
Resumo:
Structure and chemistry of poorly characterized phases (PCP). We suggest here that approximately 10 angstrom PCP, a dominant matrix variety, has a structure equivalent to iron-rich tochilinite [6Fe (sub 0.9) S 5(Fe, Mg) (OH) (sub 2) ] which consists of coherently interstratified mackinawite and brucite sheets. approximately 17 angstrom PCP, previously described as an SBB-type mixed-layer structure, is a commensurate intergrowth of serpentine and tochilinite layers. A wide range of cation substitutions is possible within both tochilinite and serpentine-tochilinite structural types. Various forms of PCP observed in carbonaceous chondrites are intergrowths of tochilinite, serpentine, serpentine-tochilinite and/or valleriite-type minerals.--Modified journal abstract.
Resumo:
A mineralogical survey of chondritic interplanetary dust particles (IDPs)showed that these micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class1. Models of chondritic IDP mineral evolution generally ignore the typical (ultra-) fine grain size of consituent minerals which range between 0.002-0.1µm in size2. The chondritic porous (CP) subset of chondritic IDPs is probably debris from short period comets although evidence for a cometary origin is still circumstantial3. If CP IDPs represent dust from regions of the Solar System in which comet accretion occurred, it can be argued that pervasive mineralogical evolution of IDP dust has been arrested due to cryogenic storage in comet nuclei. Thus, preservation in CP IDPs of "unusual meteorite minerals", such as oxides of tin, bismuth and titanium4, should not be dismissed casually. These minerals may contain specific information about processes that occurred in regions of the solar nebula, and early Solar System, which spawned the IDP parent bodies such as comets and C, P and D asteroids6. It is not fully appreciated that the apparent disparity between the mineralogy of CP IDPs and carbonaceous chondrite matrix may also be caused by the choice of electron-beam techniques with different analytical resolution. For example, Mg-Si-Fe distributions of Cl matrix obtained by "defocussed beam" microprobe analyses are displaced towards lower Fe-values when using analytical electron microscope (AEM)data which resolve individual mineral grains of various layer silicates and magnetite in the same matrix6,7. In general, "unusual meteorite minerals" in chondritic IDPs, such as metallic titanium, Tin01-n(Magneli phases) and anatase8 add to the mineral data base of fine-grained Solar System materials and provide constraints on processes that occurred in the early Solar System.
Resumo:
YBa2Cu3O7-δ - 25mol%Y2BaCuO5 bars and thick films have been melt textured using a stationary furnace with a temperature gradient of 3 or 6°C/cm. Samples are heated above the peritectic reaction temperature and quenched to just above the solidification temperature and then slowly cooled below the solidification temperature. All bar shaped samples consist of 2-5 mm grains though the grain orientations strongly depend on the heat treatment conditions. The bar shows the maximum Jc of above 3,000 A/cm2, whereas the maximum Jc of 200 A/cm2 and Tczero of 88K are obtained for the thick film on (100) LaAlO3 single crystal.
Resumo:
The structure of Cu-ZSM-5 catalysts that show activity for direct NO decomposition and selective catalytic reduction of NOx by hydrocarbons has been investigated by a multitude of modern surface analysis and spectroscopy techniques including X-ray photoelectron spectroscopy, thermogravimetric analysis, and in situ Fourier transform infrared spectroscopy. A series of four catalysts were prepared by exchange of Na-ZSM-5 with dilute copper acetate, and the copper loading was controlled by variation of the solution pH. Underexchanged catalysts contained isolated Cu2+OH-(H2O) species and as the copper loading was increased Cu2+ ions incorporated into the zeolite lattice appeared. The sites at which the latter two copper species were located were fundamentally different. The Cu2+OH-(H2O) moieties were bound to two lattice oxygen ions and associated with one aluminum framework species. In contrast, the Cu2+ ions were probably bound to four lattice oxygen ions and associated with two framework aluminum ions. Once the Cu-ZSM-5 samples attained high levels of exchange, the development of [Cu(μ-OH)2Cu]n2+OH-(H2O) species along with a small concentration of Cu(OH)2 was observed. On activation in helium to 500°C the Cu2+OH-(H2O) species transformed into Cu2+O- and Cu+ moieties, whereas the Cu2+ ions were apparently unaffected by this treatment (apart from the loss of ligated water molecules). Calcination of the precursors resulted in the formation of Cu2+O2- and a one-dimensional CuO species. Temperature-programmed desorption studies revealed that oxygen was removed from the latter two species at 407 and 575°C, respectively. © 1999 Academic Press.
Resumo:
The microstructure of YBa2Cu3O7-delta (Y-123) materials partially-melted in air and quenched from the temperature range 900-1100 degrees C, has been characterized using a combination of X-ray diffractometry, optical microscopy, scanning electron microscopy, electron microprobe analyses, transmission electron microscopy and energy and wave dispersive X-ray spectrometries. The microstructural studies reveal significant changes in the character of the quenched partial-melt as a function of temperature and time before quenching. BaCu2O2 and BaCuO2 are found to co-exist in stoichiometric samples quenched from the temperature range 920-960 degrees C. Under suitable cooling conditions, large pockets of melt cristallize as BaCuO2 with an exsolution of BaCu2O2 in the form of thin plates (approximate to 50-100 nm thick) along facets. Y2BaCuO5 (Y-211) additions are associated with the formation of BaCu2O2 at 1100 degrees C. Preliminary results on the effects of PtO2 and CeO2 additions to Y-123 (and Y-123 with Y-211 additions) show that these enhace the formation of BaCu2O2 at the melting temperature of 1100 degrees C. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
This work presents an assessment of the coprecipitation technique for the reliable production of high-temperature superconducting (HTS) copper-oxide powders in quantities scaled up to 1 kg. This process affords precise control of cation stoichiometry (< 4% relative), occurs rapidly (almost instantaneously) and can be suitably developed for large-scale (e.g. tonne) manufacture of HTS materials. The process is based upon a simple control of the chemistry of the cation solution and precipitation with oxalic acid. This coprecipitation method is applicable to all copper-oxides and has been demonstrated in this work using over thirty separate experiments for the following compositions: YBa2Cu3O7-δ, Y2BaCuO5 and YBa2Cu4O8. The precursor powders formed via this coprecipitation process are fine-grained (∼ 5-10 nm), chemically homogeneous at the nanometer scale and reactive, Conversion to phase-pure HTS powders can therefore occur in minutes at appropriate firing temperatures. © 1995.
Resumo:
A study of the bulk formation of YBa2Cu3O7-x from the Y2BaCuO5 plus liquid regime reveals that phase formation occurs at appreciable rates below 950°C in air. This result has been observed for phase-pure YBa2Cu3O7-x starting material given two types of heat treatment: held at 1100°C and slow-cooled from 1030°C at 6°C/h or heat-treated isothermally. Differential thermal analysis, with a cooling rate of 10°C/min indicates that the degree of undercooling for the peritectic formation of YBa2Cu3O7-x is greater than 100°C. © 1994.
Resumo:
Wires of YBa2Cu3O7-x were fabricated by extrusion using a hydroxypropyl methylcellulose (HPMC) binder. As little as 2 wt.% binder was added to an oxide prepared by a novel co-precipitation process, to produce a plastic mass which readily gave continuous extrusion of long lengths of wire in a reproducible fashion. Critical temperatures of 92K were obtained for wires given optimum high-temperature heat treatments. Critical current densities greater than 1000 A cm-1 were measured at 77.3K using heat treatments at around 910°C for 10h. These transport critical current densities, measured on centimeter-long wires, were obtained with microstructures showing a relatively dense and uniform distribution of randomly oriented, small YBa2Cu3O7-x grains. © 1993.
Resumo:
In previous Analytical Electron Microscope studies of extraterrestrial Chondritic Porous Aggregate (CPA) W7029* A, we have reported on the presence of layer silicates(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983) and metal oxides (Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1984). We present here a continuation ofthis detailed mineralogical study and propose a scenario which may account for the variety and types of phases observed in this CPA. At least 50% ofCPA W7029*A is carbonaceous material, primarily poorly graphitised carbon (POC) with morphologies similar to POC in acid residues of carbonaceous chondrites (Smith and Busek, 1981; Lumpkin, 1983). The basal spacing of graphite in CPA W7029*A ranges from 3.47-3.52 A and compares with doo, of graphite in the Allende residues (Smith and Buseck, 1981; Lumpkin, 1983). Low-temperature phases comprise - 20% of CPA W7029*A and include layer silicates, Bi,O" a-FeOOH(Rietmeijer and Mackinnon, 1984a; Mackinnon and Rietmeijer, 1983), BaSO.,.Ti.O, plates, pentlandite-violarite and bornite. Clusters of Mg-rich olivine and pyroxene make up - 12% of the aggregate...
Resumo:
The catalytic performance of Fe–Ni/PG (PG: palygorskite) catalysts pre-calcined and reduced at 500 ◦C for catalytic decomposition of tar derived through rice hull gasification was investigated. The materials were characterized by using X-ray diffraction, hydrogen temperature reduction, and transmission electron microscopy. The results showed that ferrites with spinel structure ((Fe, Ni)3O4) were formed during preparation of bimetallic systems during calcination and reduction of the precursors (Fe–Ni/PG catalysts) and NiO metal oxide particles were formed over Fe6–Ni9/PG catalyst. The obtained experimental data showed that Fe–Ni/PG catalysts had greater catalytic activity than natural PG. Tar removal using Fe6–Ni9/PG catalyst was as high as Fe10–Ni6/PG catalyst (99.5%). Fe6–Ni9/PG showed greater catalytic activity with greater H2 yield and showed stronger resistance to carbon deposition, attributed to the presence of NiO nanoparticles. Thus, the addition of nickel and iron oxides played an important role in catalytic cracking of rice hull biomass tar.
Resumo:
Interest in nanowires of metal oxide oxides has been exponentially growing in the last years, due to the attracting potential of application in electronic, optical and sensor field. We have focused our attention on the sensing properties of semiconducting nanowires as conductometric and optical gas sensors. Single crystal tin dioxide nanostructures were synthesized to explore and study their capability in form of multi-nanowires sensors. The nanowires of SnO2 have been used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. For the first time, a reactive oxide layer in this device has been replaced by SnO2 nanowires. Proposed sensor has maintained the advantageous properties of known SiC- based MOS devices, that can be employed for the monitoring of gases (hydrogen and hydrocarbons) emitted by industrial combustion processes.