912 resultados para Newcastle disease virus (NDV) vaccines


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friend virus infection of adult immunocompetent mice is a well established model for studying genetic resistance to infection by an immunosuppressive retrovirus. This paper reviews both the genetics of immune resistance and the types of immune responses required for recovery from infection. Specific major histocompatibility complex (MHC) class I and II alleles are necessary for recovery, as is a non-MHC gene, Rfv-3, which controls virus-specific antibody responses. In concordance with these genetic requirements are immunological requirements for cytotoxic T lymphocyte, T helper, and antibody responses, each of which provides essential nonoverlapping functions. The complexity of responses necessary for recovery from Friend virus infection has implications for both immunotherapies and vaccines. For example, it is shown that successful passive antibody therapy is dependent on MHC type because of the requirement for T cell responses. For vaccines, successful immunization requires priming of both T cell and B cell responses. In vivo depletion experiments demonstrate different requirements for CD8+ T cells depending on the vaccine used. The implications of these studies for human retroviral diseases are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We inoculated BALB/c mice deficient in STAT6 (STAT6−/−) and their wild-type (wt) littermates (STAT6+/+) with the natural mouse pathogen, ectromelia virus (EV). STAT6−/− mice exhibited increased resistance to generalized infection with EV when compared with STAT6+/+ mice. In the spleens and lymph nodes of STAT6−/− mice, T helper 1 (Th1) cytokines were induced at earlier time points and at higher levels postinfection when compared with those in STAT6+/+ mice. Elevated levels of NO were evident in plasma and splenocyte cultures of EV-infected STAT6−/− mice in comparison with STAT6+/+ mice. The induction of high levels of Th1 cytokines in the mutant mice correlated with a strong natural killer cell response. We demonstrate in genetically susceptible BALB/c mice that the STAT6 locus is critical for progression of EV infection. Furthermore, in the absence of this transcription factor, the immune system defaults toward a protective Th1-like response, conferring pronounced resistance to EV infection and disease progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An emerging topic in plant biology is whether plants display analogous elements of mammalian programmed cell death during development and defense against pathogen attack. In many plant–pathogen interactions, plant cell death occurs in both susceptible and resistant host responses. For example, specific recognition responses in plants trigger formation of the hypersensitive response and activation of host defense mechanisms, resulting in restriction of pathogen growth and disease development. Several studies indicate that cell death during hypersensitive response involves activation of a plant-encoded pathway for cell death. Many susceptible interactions also result in host cell death, although it is not clear how or if the host participates in this response. We have generated transgenic tobacco plants to express animal genes that negatively regulate apoptosis. Plants expressing human Bcl-2 and Bcl-xl, nematode CED-9, or baculovirus Op-IAP transgenes conferred heritable resistance to several necrotrophic fungal pathogens, suggesting that disease development required host–cell death pathways. In addition, the transgenic tobacco plants displayed resistance to a necrogenic virus. Transgenic tobacco harboring Bcl-xl with a loss-of-function mutation did not protect against pathogen challenge. We also show that discrete DNA fragmentation (laddering) occurred in susceptible tobacco during fungal infection, but does not occur in transgenic-resistant plants. Our data indicate that in compatible plant–pathogen interactions apoptosis-like programmed cell death occurs. Further, these animal antiapoptotic genes function in plants and should be useful to delineate resistance pathways. These genes also have the potential to generate effective disease resistance in economically important crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have introduced a targeted mutation in SH2D1A/DSHP/SAP, the gene responsible for the human genetic disorder X-linked lymphoproliferative disease (XLP). SLAM-associated protein (SAP)-deficient mice had normal lymphocyte development, but on challenge with infectious agents, recapitulated features of XLP. Infection of SAP− mice with lymphocyte choriomeningitis virus (LCMV) or Toxoplasma gondii was associated with increased T cell activation and IFN-γ production, as well as a reduction of Ig-secreting cells. Anti-CD3-stimulated splenocytes from uninfected SAP− mice produced increased IFN-γ and decreased IL-4, findings supported by decreased serum IgE levels in vivo. The Th1 skewing of these animals suggests that cytokine misregulation may contribute to phenotypes associated with mutation of SH2D1A/SAP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adeno-associated virus (AAV) has attracted considerable interest as a potential vector for gene delivery. Wild-type virus is notable for the lack of association with any human disease and the ability to stably integrate its genome in a site-specific manner in a locus on human chromosome 19 (AAVS1). Use of a functional model system for AAV DNA integration into AAVS1 has allowed us to conclude that the recombination event is directed by cellular DNA sequences. Recombinant junctions isolated from our integration assay were analyzed and showed characteristics similar to those found in latently infected cell lines. The minimal DNA signals within AAVS1 required for targeted integration were identified and shown to contain functional motifs of the viral origin of replication. A replication mediated model of AAV DNA integration is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultrastructural pathology of myelinated axons in mice infected experimentally with the Fujisaki strain of Creutzfeldt-Jakob disease (CJD) virus is characterized by myelin sheath vacuolation that closely resembles that induced in murine spinal cord organotypic cultures by tumor necrosis factor alpha (TNF-alpha), a cytokine produced by astrocytes and macrophages. To clarify the role of TNF-alpha in experimental CJD, we investigated the expression of TNF-alpha in brain tissues from CJD virus-infected mice at weekly intervals after inoculation by reverse transcription-coupled PCR, Northern and Western blot analyses, and immunocytochemical staining. Neuropathological findings by electron microscopy, as well as expression of interleukin 1 alpha and glial fibrillary acidic protein, were concurrently monitored. As determined by reverse transcription-coupled PCR, the expression of TNF-alpha, interleukin 1 alpha, and glial fibrillary acidic protein was increased by approximately 200-fold in the brains of CJD virus-inoculated mice during the course of disease. By contrast, beta-actin expression remained unchanged. Progressively increased expression of TNF-alpha in CJD virus-infected brain tissues was verified by Northern and Western blot analyses, and astrocytes in areas with striking myelin sheath vacuolation were intensely stained with an antibody against murine TNF-alpha. The collective findings of TNF-alpha overexpression during the course of clinical disease suggest that TNF-alpha may mediate the myelin sheath vacuolation observed in experimental CJD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been proposed that cloned plant disease resistance genes could be transferred from resistant to susceptible plant species to control important crop plant diseases. The recently cloned N gene of tobacco confers resistance to the viral pathogen, tobacco mosaic virus. We generated transgenic tomato plants bearing the N gene and demonstrate that N confers a hypersensitive response and effectively localizes tobacco mosaic virus to sites of inoculation in transgenic tomato, as it does in tobacco. The ability to reconstruct the N-mediated resistance response to tobacco mosaic virus in tomato demonstrates the utility of using isolated resistance genes to protect crop plants from diseases, and it demonstrates that all the components necessary for N-mediated resistance are conserved in tomato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cucumber mosaic cucumovirus (CMV) infects a very wide range of plant species (>1000 species). We recently demonstrated that a previously undescribed gene (2b) encoded by RNA 2 of the tripartite RNA genome of CMV is required for systemic virus spread and disease induction in its hosts. Herein we report that when this CMV gene is replaced by its homologue from tomato aspermy cucumovirus (TAV), the resultant hybrid virus is significantly more virulent, induces earlier onset of systemic symptoms, and accumulates to a higher level in seven host species from three families than either of the parents. Our results indicate that CMV and the TAV 2b protein interact synergistically despite the fact that no synergism occurs in double infections with the two parental viruses. To our knowledge, this is the first example of an interspecific hybrid made from plant or animal RNA viruses that is more efficient in systemic infection of a number of hosts than the naturally occurring parents. As CMV and the hybrid virus accumulated to a similar level in the infected tobacco protoplasts, the observed synergistic responses most likely resulted from an increased efficacy of the hybrid virus in systemic spread in host plants provided by the TAV 2b protein. The relevance of our finding to the application of pathogen-derived resistance is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabry disease is an X-linked metabolic disorder due to a deficiency of alpha-galactosidase A (alpha-gal A; EC 3.2.1.22). Patients accumulate glycosphingolipids with terminal alpha-galactosyl residues that come from intracellular synthesis, circulating metabolites, or from the biodegradation Of senescent cells. Patients eventually succumb to renal, cardio-, or cerebrovascular disease. No specific therapy exists. One possible approach to ameliorating this disorder is to target corrective gene transfer therapy to circulating hematopoietic cells. Toward this end, an amphotropic virus-producer cell line has been developed that produces a high titer (>10(6) i.p. per ml) recombinant retrovirus constructed to transduce and correct target cells. Virus-producer cells also demonstrate expression of large amounts of both intracellular and secreted alpha-gal A. To examine the utility of this therapeutic vector, skin fibroblasts from Fabry patients were corrected for the metabolic defect by infection with this recombinant virus and secreted enzyme was observed. Furthermore, the secreted enzyme was found to be taken up by uncorrected cells in a mannose-6-phosphate receptor-dependent manner. In related experiments, immortalized B cell lines from Fabry patients, created as a hematologic delivery test system, were transduced. As with the fibroblasts, transduced patient B cell lines demonstrated both endogenous enzyme correction and a small amount of secretion together with uptake by uncorrected cells. These studies demonstrate that endogenous metabolic correction in transduced cells, combined with secretion, may provide a continuous source of corrective material in trans to unmodified patient bystander cells (metabolic cooperativity).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vaccination of two chimpanzees against hepatitis B virus (HBV) by intramuscular injection of plasmid DNA encoding the major and middle HBV envelope proteins induced group-, subtype- and preS2-specific antibodies. These were initially of IgM isotype, and then they were of IgG (predominantly IgGl) isotype. The chimpanzee injected with 2 mg of DNA attained >100 milli-international units/ml of anti-HBs antibody after one injection and 14,000 milli-international units/ml after four injections. A smaller dose (400 microg) induced lower and transient titers, but a strong anamnestic response occurred 1 year later. Comparison with responses in 23 chimpanzees receiving various antigen-based HBV vaccines suggests that the DNA approach is promising for prophylactic immunization against HBV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathogenesis of simian immunodeficiency virus (SIV) infection in rhesus macaques begins with acute viremia and then progresses to a distributed infection in the solid lymphoid tissues, which is followed by a process of cellular destruction leading to terminal disease and death. Blood and tissue specimens show the progress of infection at the cellular level but do not reveal the pattern of infection and host responses occurring throughout the body. The purpose of this investigation was to determine whether positron emission tomography (PET) imaging with intravenous 2-18F-2-deoxyglucose (FDG) could identify activated lymphoid tissues in a living animal and whether this pattern would reflect the extent of SIV infection. PET images from SIV-infected animals were distinguishable from uninfected controls and revealed a pattern consistent with widespread lymphoid tissue activation. Significant FDG accumulation in colon along with mesenteric and ileocaecal lymph nodes was found in SIV infection, especially during terminal disease stages. Areas of elevated FDG uptake in the PET images were correlated with productive SIV infection using in situ hybridization as a test for virus replication. PET-FDG images of SIV-infected animals correlated sites of virus replication with high FDG accumulation. These data show that the method can be used to evaluate the distribution and activity of infected tissues in a living animal without biopsy. Fewer tissues had high FDG uptake in terminal animals than midstage animals, and both were clearly distinguishable from uninfected animal scans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a cellular model of infection by the hepatitis B virus and describe how it may be used to account for two important features of the disease, namely (i) the wide variety of manifestations of infection and the age dependence thereof, and (ii) the typically long delay before the development of virus-induced liver cancer (primary hepatocellular carcinoma). The model is based on the assumption that the liver is comprised of both immature and mature hepatocytes, with these two subpopulations of cells responding contrastingly upon infection by the virus.