997 resultados para New Wars
Resumo:
Aims: To determine the prevalence of hazardous drinking and alcohol-related negative consequences in New Zealand tertiary students, and to identify predictors of hazardous drinking across a 6-month period. Methods: A total of 1480 tertiary students living in halls of residence was surveyed at the start of the academic year, and a subsample of 967 students was followed up 6 months later. Questionnaire items included quantity and frequency of drinking, alcohol-related problems, use of other substances, and the Alcohol Use Disorders Identification Test (AUDIT). Drinking at follow-up was modelled using demographic characteristics, mental well-being, other substance use, alcohol-related problems, and hall drinking norms, measured at baseline. Results: Among drinkers, mean (+/- SD) weekly consumption was 243 +/- 241 and 135 +/- 157 g of ethanol for males and females respectively. The majority of male (60.0%) and female (58.2%) drinkers typically consumed more than national safe drinking guidelines. Mean (+/- SD) AUDIT scores were 10.9 +/- 7.6 for males and 7.6 +/- 5.9 for females. After controlling for AUDIT scores at baseline, increased AUDIT scores at follow-up were higher with lower age, Maori ethnicity, smoking, cannabis use, high levels of alcohol-related negative consequences, and higher levels of drinking in the student's hall of residence. Conclusions: Hazardous drinking is widespread and persistent among students living in the halls of residence. There is a need for university alcohol policies and intervention approaches among New Zealand tertiary students.
Resumo:
A comprehensive study using virological and serological approaches was carried out to determine the status of live healthy mallard ducks (Anas platyrhynchos) in New Zealand for infections with avian paramyxoviruses (APMV) and influenza viruses (AIV). Thirty-three viruses isolated from 321 tracheal and cloacal swabs were characterized as: 6 AIV (two H5N2 and four H4N6), 10 APMV-1 and 17 APMV-4. Of 335 sera samples tested for AIV antibodies, 109 (32.5%) sera were positive by nucleoprotein-blocking ELISA (NP-B-ELISA). Serum samples (315) were examined for antibody to APMV-1, -2, -3, -4, -6, -7, -8, -9 by the haemagglutination inhibition test. The largest number of reactions, with titres up to greater than or equal to 1/64, was to APMV-1 (93.1%), followed by APMV-6 (85.1%), APMV-8 (56%), APMV-4 (51.7%), APMV-7 (47%), APMV-9 (15.9%), APMV-2 (13.3%) and APMV-3 (6.0%). All of the H5N2 isolates of AIV and the APMV-1 isolates from this and earlier New Zealand studies had low pathogenicity indices assessed by the Intravenous Pathogenicity Index (IVPI) with the result 0.00 and Intracerebral Pathogenicity Index (ICPI) with results 0.00-0.16. Partial genomic and antigenic analyses were also consistent with the isolates being non-pathogenic. Phylogenetic analysis of the 10 APMV-1 isolates showed 9 to be most similar to the reference APMV-1 strain D26/76 originally isolated in Japan and also to the Que/66 strain, which was isolated in Australia. The other isolate was very similar to a virus (MC 110/77) obtained from a shelduck in France.
Resumo:
The short-lived Hf-182-W-182-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic Hf-182-W-182-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 epsilon(182W) units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while Hf-182 was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value. Copyright (C) 2002 Elsevier Science Ltd.