918 resultados para Neuronal oscillations
Resumo:
Almost 20 years after the first conceptual design of the experiment, five years of running in the Gran Sasso underground laboratory (LNGS), and billions of billions muon-neutrinos sent from CERN along the CNGS beam, in 2015 the OPERA neutrino detector has allowed the long-awaited discovery of the direct transformation (oscillation) of muon-neutrinos into tau-neutrinos. This result unambiguously confirms the interpretation of the so-called atmospheric channel, after the discovery of neutrino oscillations by the Super-Kamiokande Collaboration in 1998.
Resumo:
T2K reports its first measurements of the parameters governing the disappearance of νµ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic νµ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector SuperKamiokande, 295 km away, where the νµ survival probability is expected to be minimal. Using a dataset corresponding to 4.01×10²⁰ protons on target, 34 fully contained µ-like events were observed. The best-fit oscillation parameters are sin²(θ₂₃) = 0.45 and |∆m^2_32| = 2.51 × 10⁻³ eV² with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 ×10⁻³ eV² respectively. These results are in agreement with existing antineutrino parameter measurements and also with the νµ disappearance parameters measured by T2K.
Resumo:
Universität Magdeburg, Dissertation, 2016
Resumo:
Mode of access: Internet.
Resumo:
"September 1976."
Resumo:
"September 1976."
Resumo:
"February 1977."
Resumo:
At head of title: PRL-9-23.
Resumo:
"Prepared for the Air Force Ballistic Missile Division, Headquarters Air Research and Development Command, under Contract AF 04 (647-309 Thermonuclear Propulsion Research."
Resumo:
Mode of access: Internet.
Resumo:
"Prepared under Contract AT(04-3)-165 with the United States Atomic Energy Commission."
Resumo:
"Supported in part by a National Science Foundation grant for theoretical physics related to I. G. Y."
Resumo:
At head of title: Office of Naval Research, Contract NONR-1858(04), Project NRO43-942.
Resumo:
The homeostasis of glutamate is critical to normal brain function; deficiencies in the regulation of extracellular glutamate are thought to be a major determinant of damage in hypoxic brains. Extracellular levels of glutamate are regulated mainly by plasmalemmal glutamate transporters. We have evaluated the distribution of the glutamate transporter GLAST and two splice variants of GLT-1 in the hypoxic neonatal pig brain using this as model of neonatal humans. In response to severe hypoxic insults, we observe a rapid loss of two glial glutamate transporters from specific brain regions, such as the CA1 region of the hippocampus, but not the dentate gyrus. The spatial distribution of loss accords with patterns of damage in these brains. Conversely, we demonstrate that hypoxia evokes the expression of a splice variant of GLT-1 in neurons. We suggest that this expression may be induced in response to elevated extracellular glutamate around these neurons, and that this splice variant may represent a useful marker for direct quantification of the extent of likely neuronal damage in hypoxic brains. © 2004 Elsevier B.V. All rights reserved.