828 resultados para Neural-networks
Resumo:
For neural networks with a wide class of weight-priors, it can be shown that in the limit of an infinite number of hidden units the prior over functions tends to a Gaussian process. In this paper analytic forms are derived for the covariance function of the Gaussian processes corresponding to networks with sigmoidal and Gaussian hidden units. This allows predictions to be made efficiently using networks with an infinite number of hidden units, and shows that, somewhat paradoxically, it may be easier to compute with infinite networks than finite ones.
Resumo:
Mixture Density Networks (MDNs) are a well-established method for modelling the conditional probability density which is useful for complex multi-valued functions where regression methods (such as MLPs) fail. In this paper we extend earlier research of a regularisation method for a special case of MDNs to the general case using evidence based regularisation and we show how the Hessian of the MDN error function can be evaluated using R-propagation. The method is tested on two data sets and compared with early stopping.
Resumo:
This paper reports the initial results of a joint research project carried out by Aston University and Lloyd's Register to develop a practical method of assessing neural network applications. A set of assessment guidelines for neural network applications were developed and tested on two applications. These case studies showed that it is practical to assess neural networks in a statistical pattern recognition framework. However there is need for more standardisation in neural network technology and a wider takeup of good development practice amongst the neural network community.