999 resultados para Neural tumour


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Molecular pathology relies on identifying anomalies using PCR or analysis of DNA/RNA. This is important in solid tumours where molecular stratification of patients define targeted treatment. These molecular biomarkers rely on examination of tumour, annotation for possible macro dissection/tumour cell enrichment and the estimation of % tumour. Manually marking up tumour is error prone. Method: We have developed a method for automated tumour mark-up and % cell calculations using image analysis called TissueMark® based on texture analysis for lung, colorectal and breast (cases=245, 100, 100 respectively). Pathologists marked slides for tumour and reviewed the automated analysis. A subset of slides was manually counted for tumour cells to provide a benchmark for automated image analysis. Results: There was a strong concordance between pathological and automated mark-up (100 % acceptance rate for macro-dissection). We also showed a strong concordance between manually/automatic drawn boundaries (median exclusion/inclusion error of 91.70 %/89 %). EGFR mutation analysis was precisely the same for manual and automated annotation-based macrodissection. The annotation accuracy rates in breast and colorectal cancer were 83 and 80 % respectively. Finally, region-based estimations of tumour percentage using image analysis showed significant correlation with actual cell counts. Conclusion: Image analysis can be used for macro-dissection to (i) annotate tissue for tumour and (ii) estimate the % tumour cells and represents an approach to standardising/improving molecular diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using fMRI, we conducted two types of property generation task that involved language switching, with early bilingual speakers of Korean and Chinese. The first is a more conventional task in which a single language (L1 or L2) was used within each trial, but switched randomly from trial to trial. The other consists of a novel experimental design where language switching happens within each trial, alternating in the direction of the L1/L2 translation required. Our findings support a recently introduced cognitive model, the 'hodological' view of language switching proposed by Moritz-Gasser and Duffau. The nodes of a distributed neural network that this model proposes are consistent with the informative regions that we extracted in this study, using both GLM methods and Multivariate Pattern Analyses: the supplementary motor area, caudate, supramarginal gyrus and fusiform gyrus and other cortical areas. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural network (ANN) methods are used to predict forest characteristics. The data source is the Southeast Alaska (SEAK) Grid Inventory, a ground survey compiled by the USDA Forest Service at several thousand sites. The main objective of this article is to predict characteristics at unsurveyed locations between grid sites. A secondary objective is to evaluate the relative performance of different ANNs. Data from the grid sites are used to train six ANNs: multilayer perceptron, fuzzy ARTMAP, probabilistic, generalized regression, radial basis function, and learning vector quantization. A classification and regression tree method is used for comparison. Topographic variables are used to construct models: latitude and longitude coordinates, elevation, slope, and aspect. The models classify three forest characteristics: crown closure, species land cover, and tree size/structure. Models are constructed using n-fold cross-validation. Predictive accuracy is calculated using a method that accounts for the influence of misclassification as well as measuring correct classifications. The probabilistic and generalized regression networks are found to be the most accurate. The predictions of the ANN models are compared with a classification of the Tongass national forest in southeast Alaska based on the interpretation of satellite imagery and are found to be of similar accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main purposes of building a battery model is for monitoring and control during battery charging/discharging as well as for estimating key factors of batteries such as the state of charge for electric vehicles. However, the model based on the electrochemical reactions within the batteries is highly complex and difficult to compute using conventional approaches. Radial basis function (RBF) neural networks have been widely used to model complex systems for estimation and control purpose, while the optimization of both the linear and non-linear parameters in the RBF model remains a key issue. A recently proposed meta-heuristic algorithm named Teaching-Learning-Based Optimization (TLBO) is free of presetting algorithm parameters and performs well in non-linear optimization. In this paper, a novel self-learning TLBO based RBF model is proposed for modelling electric vehicle batteries using RBF neural networks. The modelling approach has been applied to two battery testing data sets and compared with some other RBF based battery models, the training and validation results confirm the efficacy of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the technique of time reversal (TR), through adding dispersive delay lines to each element of a TR mirror, a method for low contrast tumour detection is proposed. When compared with a conventional detection method, the proposed method improves refocusing onto a low dielectric contrast tumour. The method does not require an accurate estimate of the position of the tumour. The theoretical basis for the approach is given and numerical simulated results demonstrate the capability of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.

In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory viral infections are a common cause of acute coughing, an irritating symptom for the patient and an important mechanism of transmission for the virus. Although poorly described, the inflammatory consequences of infection likely induce coughing by chemical (inflammatory mediator) or mechanical (mucous) activation of the cough-evoking sensory nerves that innervate the airway wall. For some individuals, acute cough can evolve into a chronic condition, in which cough and aberrant airway sensations long outlast the initial viral infection. This suggests that some viruses have the capacity to induce persistent plasticity in the neural pathways mediating cough. In this brief review we present the clinical evidence of acute and chronic neural dysfunction following viral respiratory tract infections and explore possible mechanisms by which the nervous system may undergo activation, sensitization and plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of neural networks can be formulated as the linear-in-the-parameters models. Training such networks can be transformed to a model selection problem where a compact model is selected from all the candidates using subset selection algorithms. Forward selection methods are popular fast subset selection approaches. However, they may only produce suboptimal models and can be trapped into a local minimum. More recently, a two-stage fast recursive algorithm (TSFRA) combining forward selection and backward model refinement has been proposed to improve the compactness and generalization performance of the model. This paper proposes unified two-stage orthogonal least squares methods instead of the fast recursive-based methods. In contrast to the TSFRA, this paper derives a new simplified relationship between the forward and the backward stages to avoid repetitive computations using the inherent orthogonal properties of the least squares methods. Furthermore, a new term exchanging scheme for backward model refinement is introduced to reduce computational demand. Finally, given the error reduction ratio criterion, effective and efficient forward and backward subset selection procedures are proposed. Extensive examples are presented to demonstrate the improved model compactness constructed by the proposed technique in comparison with some popular methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel model-based principal component analysis (PCA) method is proposed in this paper for wide-area power system monitoring, aiming to tackle one of the critical drawbacks of the conventional PCA, i.e. the incapability to handle non-Gaussian distributed variables. It is a significant extension of the original PCA method which has already shown to outperform traditional methods like rate-of-change-of-frequency (ROCOF). The ROCOF method is quick for processing local information, but its threshold is difficult to determine and nuisance tripping may easily occur. The proposed model-based PCA method uses a radial basis function neural network (RBFNN) model to handle the nonlinearity in the data set to solve the no-Gaussian issue, before the PCA method is used for islanding detection. To build an effective RBFNN model, this paper first uses a fast input selection method to remove insignificant neural inputs. Next, a heuristic optimization technique namely Teaching-Learning-Based-Optimization (TLBO) is adopted to tune the nonlinear parameters in the RBF neurons to build the optimized model. The novel RBFNN based PCA monitoring scheme is then employed for wide-area monitoring using the residuals between the model outputs and the real PMU measurements. Experimental results confirm the efficiency and effectiveness of the proposed method in monitoring a suite of process variables with different distribution characteristics, showing that the proposed RBFNN PCA method is a reliable scheme as an effective extension to the linear PCA method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the analysis of the stability of delayed recurrent neural networks. In contrast to the widely used Lyapunov–Krasovskii functional approach, a new method is developed within the integral quadratic constraints framework. To achieve this, several lemmas are first given to propose integral quadratic separators to characterize the original delayed neural network. With these, the network is then reformulated as a special form of feedback-interconnected system by choosing proper integral quadratic constraints. Finally, new stability criteria are established based on the proposed approach. Numerical examples are given to illustrate the effectiveness of the new approach.