871 resultados para Neural basis of behaviour
Resumo:
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
Resumo:
Using simultaneous electroencephalography as a measure of ongoing activity and functional magnetic resonance imaging (fMRI) as a measure of the stimulus-driven neural response, we examined whether the amplitude and phase of occipital alpha oscillations at the onset of a brief visual stimulus affects the amplitude of the visually evoked fMRI response. When accounting for intrinsic coupling of alpha amplitude and occipital fMRI signal by modeling and subtracting pseudo-trials, no significant effect of prestimulus alpha amplitude on the evoked fMRI response could be demonstrated. Regarding the effect of alpha phase, we found that stimuli arriving at the peak of the alpha cycle yielded a lower blood oxygenation level-dependent (BOLD) fMRI response in early visual cortex (V1/V2) than stimuli presented at the trough of the cycle. Our results therefore show that phase of occipital alpha oscillations impacts the overall strength of a visually evoked response, as indexed by the BOLD signal. This observation complements existing evidence that alpha oscillations reflect periodic variations in cortical excitability and suggests that the phase of oscillations in postsynaptic potentials can serve as a mechanism of gain control for incoming neural activity. Finally, our findings provide a putative neural basis for observations of alpha phase dependence of visual perceptual performance.
Resumo:
Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.
Resumo:
Neural differentiation of embryonic stem cells (ESCs) requires coordinated repression of the pluripotency regulatory program and reciprocal activation of the neurogenic regulatory program. Upon neural induction, ESCs rapidly repress expression of pluripotency genes followed by staged activation of neural progenitor and differentiated neuronal and glial genes. The transcriptional factors that underlie maintenance of pluripotency are partially characterized whereas those underlying neural induction are much less explored, and the factors that coordinate these two developmental programs are completely unknown. One transcription factor, REST (repressor element 1 silencing transcription factor), has been linked with terminal differentiation of neural progenitors and more recently, and controversially, with control of pluripotency. Here, we show that in the absence of REST, coordination of pluripotency and neural induction is lost and there is a resultant delay in repression of pluripotency genes and a precocious activation of both neural progenitor and differentiated neuronal and glial genes. Furthermore, we show that REST is not required for production of radial glia-like progenitors but is required for their subsequent maintenance and differentiation into neurons, oligodendrocytes, and astrocytes. We propose that REST acts as a regulatory hub that coordinates timely repression of pluripotency with neural induction and neural differentiation.
Resumo:
Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.
Resumo:
Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within-subject designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group ("controllable") was led to believe they had behavioral control over the pain stimuli, whereas another ("uncontrollable") believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala, and increased activation in nucleus accumbens. In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial pFC. The location of pFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between pFC and both amygdala and nucleus accumbens are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion.
Resumo:
The subject of this paper is the secular behaviour of a pair of planets evolving under dissipative forces. In particular, we investigate the case when dissipative forces affect the planetary semimajor axes and the planets move inwards/outwards the central star, in a process known as planet migration. To perform this investigation, we introduce fundamental concepts of conservative and dissipative dynamics of the three-body problem. Based on these concepts, we develop a qualitative model of the secular evolution of the migrating planetary pair. Our approach is based on the analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces is invoked. We show that, under the assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the Mode I and Mode II stationary solutions of the conservative secular problem. The ultimate convergence and the evolution of the system along one of these secular modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the proper secular frequency of the system. We show that it is possible to reassemble the starting configurations and the migration history of the systems on the basis of their final states and consequently to constrain the parameters of the physical processes involved.
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007
Resumo:
Purpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins carrying conventional basic monopartite and bipartite nuclear localization sequences (NLSs) and facilitates their transport into the nucleus. Bipartite NLSs contain two clusters of basic residues, connected by linkers of variable lengths. To determine the structural basis of the recognition of diverse bipartite NLSs by mammalian importin-alpha, we co-crystallized a non-autoinhibited mouse receptor protein with peptides corresponding to the NLSs from human retinoblastoma protein and Xenopus laevis phosphoprotein N1N2, containing diverse sequences and lengths of the linker. We show that the basic clusters interact analogously in both NLSs, but the linker sequences adopt different conformations, whereas both make specific contacts with the receptor. The available data allow us to draw general conclusions about the specificity of NLS binding by importin-alpha and facilitate an improved definition of the consensus sequence of a conventional basic/bipartite NLS (KRX10-12KRRK) that can be used to identify novel nuclear proteins.
Resumo:
This study examines the influence of early experience with different forms of aggressive behaviour on the fighting behaviour of young fish. Fry of the cichlid fish, Oreochromis niloticus, were raised from hatching in small groups consisting of a normal individual (the test fish) and either mutant conspecifics lacking the dorsal fin and thereby the ability to perform fin displays, or normal ones. Following a 63-day period of development in groups the test fish were confronted in their home tanks with an unfamiliar normal fish for 10 min. The fighting behaviour of the test fish was analyzed considering their previous group type (mutant or normal) and rank (alpha or beta). There was no difference between test fish in the rate and sequence of behaviour patterns used in fighting. However, test fish that had developed in mutant groups were rarely the first to bite in contests and had a longer latency to biting following the first bite of the stimulus fish than rest fish with normal experience. This finding is attributable to the form of aggressive behaviour experienced by the test fish during development but not to existing differences in the amount of aggression previously experienced, nor to previous rank, sex, or size relative to the stimulus fish. The results suggest that early experience influenced decision making by the test fish during the fight. The involvement of the fin displays and the possible mechanism of this influence are discussed.
Resumo:
Crystallographic screening has been used to identify new inhibitors for potential target for drug development. Here, we describe the application of the crystallographic screening to assess the structural basis of specificity of ligands against a protein target. The method is efficient and results in detailed crystallographic information. The utility of the method is demonstrated in the study of the structural basis for specificity of ligands for human purine nucleoside phosphorylase (PNP). Purine nucleoside phosphorylase catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. This enzyme is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This methodology may help in the future development of a new generation of PNP inhibitors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)