913 resultados para Nano- and microstructured surfaces
Resumo:
Työn tavoitteena oli selvittää, miten eri parametrit vaikuttavat monilankaisen verrannollisuuslaskurin laskennallisiin ominaisuuksiin sekä voidaanko suurikokoista monilankaverrannollisuuslaskuria käyttää tehokkaasti suurien pintojen ? - ja ?- kontaminaation mittaamiseen. Ensin selvitettiin EU:n nykyistä clearing-käytäntöä sekä hahmoteltiin tulevia materiaalivirtoja, esiteltiin verrannollisuuslaskurin ja sen monilankamallin toimintaperiaate sekä käytettävien materiaalien ominaisuudet. Kootun teorian pohjalta selvitettiin tärkeimpien parametrien vaikutus ilmaisimen laskennallisiin ominaisuuksiin. Lopuksi suoritettiin rakenteilla olevan monilankaverrannollisuuslaskurin alustava testaus. Tulevien vuosien aikana eri puolilla maailmaa suljettavat erityyppiset ydinlaitokset luovat suuren tarpeen tehokkaiden kontaminaatiomittauslaitteistojen kehittämiselle. Tällä hetkellä mittaukset suoritetaan lähinnä noin 1 dm2 käsi-instrumentein, joten suurikokoinen, automatisoitu mittauslaitteisto sekä tehostaisi mittausprosessia suuresti sekä säästäisi runsaasti miestyötunteja. Jatkotoimenpiteiksi ehdotetaan laitteiston jatkotestausta, liikkeen ja nopeuden testausta sekä lopulta paikkaherkkyystoiminnon toteuttamisperiaatteen valintaa ja testausta.
Resumo:
Here we investigate the formation of superficial micro- and nanostructures in poly(ethylene-2,6-naphthalate) (PEN), with a view to their use in biomedical device applications, and compare its performance with a polymer commonly used for the fabrication of these devices, poly(methyl methacrylate) (PMMA). The PEN is found to replicate both micro- and nanostructures in its surface, albeit requiring more forceful replication conditions than PMMA, producing a slight increase in surface hydrophilicity. This ability to form micro/nanostructures, allied to biocompatibility and good optical transparency, suggests that PEN could be a useful material for production of, or for incorporation into, transparent devices for biomedical applications. Such devices will be able to be autoclaved, due to the polymer's high temperature stability, and will be useful for applications where forceful experimental conditions are required, due to a superior chemical resistance over PMMA.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
MgO is an important inorganic material, which can be used in many aspects, such as catalyst, toxic-waste remediation agent, adsorbent, and others. In order to make use of MgO, nano-MgO was prepared by ultrasonic method using Mg (CH3COO)2.2H2O as precursor, NaOH aqueous solution as precipitant in this paper. Effect factors on MgO nano-particle size were investigated. Characteristics of samples were measured by TGA, XRD, TEM, and others techniques. The results showed that the size of nano-MgO about 4 nm could be obtained under the following conditions (ultrasonic time 20 min, ultrasonic power 250 W, titration rate of NaOH 0.25 mL/min, NaOH concentration 0.48 mol/L, calcinations temperature 410 °C, calcination time 1.5 h, heating rate of calcination 5 °C/min). It was a very simple and effective method to prepare nano-MgO.
Resumo:
The determination of the intersection curve between Bézier Surfaces may be seen as the composition of two separated problems: determining initial points and tracing the intersection curve from these points. The Bézier Surface is represented by a parametric function (polynomial with two variables) that maps a point in the tridimensional space from the bidimensional parametric space. In this article, it is proposed an algorithm to determine the initial points of the intersection curve of Bézier Surfaces, based on the solution of polynomial systems with the Projected Polyhedral Method, followed by a method for tracing the intersection curves (Marching Method with differential equations). In order to allow the use of the Projected Polyhedral Method, the equations of the system must be represented in terms of the Bernstein basis, and towards this goal it is proposed a robust and reliable algorithm to exactly transform a multivariable polynomial in terms of power basis to a polynomial written in terms of Bernstein basis .
Resumo:
Modern automobiles are no longer just mechanical tools. The electronics and computing services they are shipping with are making them not less than a computer. They are massive kinetic devices with sophisticated computing power. Most of the modern vehicles are made with the added connectivity in mind which may be vulnerable to outside attack. Researchers have shown that it is possible to infiltrate into a vehicle’s internal system remotely and control the physical entities such as steering and brakes. It is quite possible to experience such attacks on a moving vehicle and unable to use the controls. These massive connected computers can be life threatening as they are related to everyday lifestyle. First part of this research studied the attack surfaces in the automotive cybersecurity domain. It also illustrated the attack methods and capabilities of the damages. Online survey has been deployed as data collection tool to learn about the consumers’ usage of such vulnerable automotive services. The second part of the research portrayed the consumers’ privacy in automotive world. It has been found that almost hundred percent of modern vehicles has the capabilities to send vehicle diagnostic data as well as user generated data to their manufacturers, and almost thirty five percent automotive companies are collecting them already. Internet privacy has been studies before in many related domain but no privacy scale were matched for automotive consumers. It created the research gap and motivation for this thesis. A study has been performed to use well established consumers privacy scale – IUIPC to match with the automotive consumers’ privacy situation. Hypotheses were developed based on the IUIPC model for internet consumers’ privacy and they were studied by the finding from the data collection methods. Based on the key findings of the research, all the hypotheses were accepted and hence it is found that automotive consumers’ privacy did follow the IUIPC model under certain conditions. It is also found that a majority of automotive consumers use the services and devices that are vulnerable and prone to cyber-attacks. It is also established that there is a market for automotive cybersecurity services and consumers are willing to pay certain fees to avail that.
Resumo:
A new series of nano-sized Ce1-xEuxCrO3 (x = 0.0 to 1.0) with an average particle size of 50 - 80 nm were synthesized using a solution combustion method. Nano-powders Ce1-xEuxCrO3 with the canted antiferromagnetic property exhibited interesting magnetic behaviours including the reversal magnetization and the exchange bias effect. The effect of europium doping as the ion with the smaller radius size and different electron con figuration on structural, magnetic and thermal properties of Ce1-xEuxCrO3 were investigated using various experimental techniques, i.e. DC/AC magnetic susceptibility, heat capacity, thermal expansion, Raman scattering, X-ray photoemission spectroscopy, transmission/scanning electron microscopy, X-ray powder diffraction and neutron scattering. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples confirmed the existence of the spin disorder magnetic phase in Ce1-xEuxCrO3 compounds. The exchange bias phenomenon, which is assigned to the exchange coupling between glassy-like shell and canted antiferromagnetic core, showed the opposite sign in CeCrO3 and EuCrO3 at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. The energy level excitation of samples were examined by an inelastic neutron scattering which was in good agreement with the heat capacity data. Neutron scattering analysis of EuCrO3 was challenging due to the large neutron absorption cross-section of europium. All diffraction patterns of Ce1-xEuxCrO3 showed the magnetic peak attributed to the antiferromagnetic Cr3+ spins while none of the diffraction patterns could detect the magnetic ordering of the rare-earth ions in these samples.
Resumo:
We developed a nanoparticles (NPs) library from poly(ethylene glycol)–poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a “micelle-like” or “polymer nano-aggregate” structure. Drug loading, loading efficacy and release kinetics were determined. The diffusion coefficients of curcumin in NPs were determined using a mathematical modeling. The higher diffusion was observed for solid particles compared to “polymer nano-aggregate” particles. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. Our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers.
Resumo:
Vacuum-ultraviolet (VUV) irradiation (kexc: 172 ± 12 nm) of polystyrene films in the presence of oxygen produced not only oxidatively functionalized surfaces, but generated also morphological changes. Whereas OH- and C=O-functionalized surfaces might be used for e.g. secondary functionalization, enhanced aggregation or printing, processes leading to morphological changes open new possibilities of microstructurization. Series of experiments made under different experimental conditions brought evidence of two different reaction pathways: introduction of OH- and C=O-groups at the polystyrene pathways is mainly due to the reaction of reactive oxygen species (hydroxyl radicals, atomic oxygen, ozone) produced in the gas phase between the VUV-radiation source and the substrate. However, oxidative fragmentation leading to morphological changes, oxidation products of low molecular weight and eventually to mineralization of the organic substrate is initiated by electronic excitation of the polymer leading to C–C-bond homolysis and to a complex oxidation manifold after trapping of the C-centred radicals by molecular oxygen. The pathways of oxidative functionalization or fragmentation could be differentiated by FTIR-ATR analysis of irradiated polystyrene surfaces before and after washing with acetonitrile and microscopic fluorescence analysis of the surfaces secondarily functionalized with the N,N,N-tridodecyl-triaza-triangulenium (TATA) cation. Ozonization of the polystyrene leads to oxidative functionalization of the polymer surface but cannot initiate the fragmentation of the polymer backbone. Oxidative fragmentation is initiated by electronic excitation of the polymer (contact-mode AFM analysis), and evidence of the generation of intermediate C-centred radicals is given e.g. by experiments in the absence of oxygen leading to cross-linking (solubility effects, optical microscopy, friction-mode AFM) and disproportionation (fluorescence).
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
The annealing effect on the spectral and nonlinear optical NLO characteristics of ZnO thin films deposited on quartz substrates by sol-gel process is investigated. As the annealing temperature increases from 300–1050 °C, there is a decrease in the band gap, which indicates the changes of the interface of ZnO. ZnO is reported to show two emission bands, an ultraviolet UV emission band and another in the green region. The intensity of the UV peak remains the same while the intensity of the visible peak increases with increase in annealing temperature. The role of oxygen in ZnO thin films during the annealing process is important to the change in optical properties. The mechanism of the luminescence suggests that UV luminescence of ZnO thin films is related to the transition from conduction band edge to valence band, and green luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies. The NLO response of these samples is studied using nanosecond laser pulses at off-resonance wavelengths. The nonlinear absorption coefficient increases from 2.9 ×10−6 to 1.0 ×10−4 m/W when the annealing temperature is increased from 300 to 1050 °C, mainly due to the enhancement of interfacial state and exciton oscillator strength. The third order optical susceptibility x(3) increases with increase in annealing temperature (T) within the range of our investigations. In the weak confinement regime, T2.4 dependence of x(3) is obtained for ZnO thin films. The role of annealing temperature on the optical limiting response is also studied.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
In this context,in search of new materials based on chalcogenide glasses,we have developed a novel technique for fabrication of chalcogenide nano composites which are presented in this theis.The techniques includes the dissolution of bulk chalcogenide glasses in amine solvent.This solution casting method allows to retain the attractive optical properties of chalcogenide glasses enabling new fabrication routes for realization of large area thick-thin films with less cost. Chalcogenide glass fiber geometry opens new possibilities for a large number of applications in optics,like remote temperature measurements ,CO2 laser power delivery, and optical sensing and single mode propagation of IR light.We have fabricated new optical polymer fibers doped with chalcogenide glasses which can be used for many optical applications.The present thesis also describes the structural,thermal and optical characterization of certain chalocogenide based materials prepared for different methods and its applications.