958 resultados para NITRIFYING BIOFILM REACTOR
Resumo:
The biodegradability of animal wastes production was evaluated through a simplified methodology that allowed the verification of the applicability of anaerobic processes. The experiments were performed in bath reactors, with granular sludge of three origins: UASB reactor treating dairy effluent, UASB reactor treating swine effluent and UASB reactor treating effluent of slaughterhouse of poultry. The experiments (1) - dairy effluent and poultry slaughterhouse non-adapted sludge; (2) -swine effluent and poultry slaughterhouse non-adapted sludge; (3) - dairy effluent and poultry slaughterhouse adapted sludge; (4) - swine effluent and poultry slaughterhouse adapted sludge; (5) - dairy effluent and dairy sludge, and (6) - swine effluent and swine sludge were performed in Incubator Shaker, at a temperature of 35 °C, under agitation at a 150 rpm, for 5 minutes, every 1 hour. A substrat:biomass relationship of 0.5 was used. Kinetic models of Monod, Zero Order, First and Second Order were tested and it was verified that the First Order model provided the best adjustment. The apparent First Order kinetic parameter (k1) was estimated for the experiments 1; 2; 3; 4; 5, and 6, as 2.51 x 10-2; 2.49 x 10-2; 1.90 x 10-2; 3.09 x 10-2; 2.54 x 10-2; 4.09 x 10-2 h-1, respectively.
Resumo:
For centuries, specific instruments or regular toothbrushes have routinely been used to remove tongue biofilm and improve breath odor. Toothbrushes with a tongue scraper on the back of their head have recently been introduced to the market. The present study compared the effectiveness of a manual toothbrush with this new design, i.e., possessing a tongue scraper, and a commercial tongue scraper in improving breath odor and reducing the aerobic and anaerobic microbiota of tongue surface. The evaluations occurred at 4 moments, when the participants (n=30) had their halitosis quantified with a halimeter and scored according to a 4-point scoring system corresponding to different levels of intensity. Saliva was collected for counts of aerobic and anaerobic microorganisms. Data were analyzed statistically by Friedman's test (p<0.05). When differences were detected, the Wilcoxon test adjusted for Bonferroni correction was used for multiple comparisons (group to group). The results confirmed the importance of mechanical cleaning of the tongue, since this procedure provided an improvement in halitosis and reduction of aerobe and anaerobe counts. Regarding the evaluated methods, the toothbrush's tongue scraper and conventional tongue scraper had a similar performance in terms of breath improvement and reduction of tongue microbiota, and may be indicated as effective methods for tongue cleaning.
Resumo:
OBJECTIVE: Removable partial dentures (RPD) require different hygiene care, and association of brushing and chemical cleansing is the most recommended to control biofilm formation. However, the effect of cleansers has not been evaluated in RPD metallic components. The aim of this study was to evaluate in vitro the effect of different denture cleansers on the weight and ion release of RPD. MATERIAL AND METHODS: Five specimens (12x3 mm metallic disc positioned in a 38x18x4 mm mould filled with resin), 7 cleanser agents [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) (control)] and 2 cobalt-chromium alloys [DeguDent (DD), and VeraPDI (VPDI)] were used for each experimental situation. One hundred and eighty immersions were performed and the weight was analyzed with a high precision analytic balance. Data were recorded before and after the immersions. The ion release was analyzed using mass spectrometry with inductively coupled plasma. Data were analyzed by two-way ANOVA and Tukey HSD post hoc test at 5% significance level. RESULTS: Statistical analysis showed that CT and MI had higher values of weight loss with higher change in VPDI alloy compared to DD. The solutions that caused more ion release were NaOCl and MI. CONCLUSIONS: It may be concluded that 0.05% NaOCl and Medical Interporous tablets are not suitable as auxiliary chemical solutions for RPD care.
Resumo:
Removable partial dentures (RPD) demand specific hygienic cleaning and the combination of brushing with immersion in chemical solutions has been the most recommended method for control of biofilm. However, the effect of the cleansers on metallic components has not been widely investigated. This study evaluated the effect of different cleansers on the surface of RPD. Five disc specimens (12 mm x 3 mm metallic disc centered in a 38 x 18 x 4 mm mould filled with resin) were obtained for each experimental situation: 6 solutions [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) control] and 2 Co-Cr alloys [DeguDent (DD) and VeraPDI (VPDI)] were used for each experimental situation. A 180-day immersion was simulated and the measurements of roughness (Ra, µm) of metal and resin were analyzed using 2-way ANOVA and Tukey’s test. The surface changes and tarnishes were examined with a scanning electronic microscopy (SEM). In addition, energy dispersive x-ray spectrometry (EDS) analysis was carried out at representative areas. Visually, NaOCl and MI specimens presented surface tarnishes. The roughness of materials was not affected by the solutions (p>0.05). SEM images showed that NaOCl and MI provided surface changes. EDS analysis revealed the presence of oxygen for specimens in contact with both MI and NaOCl solutions, which might suggest that the two solutions promoted the oxidation of the surfaces, thus leading to spot corrosion. Within the limitations of this study, it may be concluded that the NaOCl and MI may not be suitable for cleaning of RPD.
Resumo:
The aims of this study were to evaluate the incidence of mutans streptococci (MS - sessile form) on complete maxillary dentures after use of a specific denture paste, and to determine the minimum inhibitory concentration (MIC) and maximum inhibitory dilution (MID) of 3 oral mouthrinses: Cepacol, Plax and Periogard. Seventy-seven complete denture wearers were randomly assigned into 2 groups, according to the product used for denture cleaning: Control group - conventional dentifrice (Kolynos-Super White); and Test group: experimental denture cleaning paste. Denture biofilm was collected at baseline and after 90 and 180 days after treatment by brushing the dentures with saline solution. After decimal serial dilution, samples were seeded onto agar sucrose bacitracin to count colonies with morphological characteristics of MS. MS identification was performed by the sugar fermentation tests. After this procedure, brain heart infusion broth (BHI) was added to oral mouthrinses (Plax, Cepacol e Periogard) and seeded on Petri dishes. The colonies were seeded using the Steers multiplier and, after the incubation, the MIC and MID of the mouthrinses were calculated. The results showed an incidence of 74.0% (n=57) of MS in the 77 complete dentures examined in the study, being 76.3% (n=29) of the Control group (conventional dentifrice) and 71.8% (28) of the Test group (experimental denture cleaning paste). In both groups, the number of positive cases for MS decreased from day 0 to day 180. In the Test group there was a slight decrease in the incidence of Streptococcus mutans 90 days after use of the experimental denture cleaning paste, which was not observed in the Control group. As regards to mouthrinses, for both groups, Periogard showed antimicrobial action with the highest dilution, followed by Cepacol and Plax. In conclusion, the incidence of MS in complete dentures was high and Periogard was the mouthrinse with the strongest antimicrobial action against MS. The experimental denture cleaning paste showed a slight action against S. mutans after 90 days of treatment.
Resumo:
OBJECTIVE: This study evaluated the efficacy of NitrAdineTM-based disinfecting cleaning tablets for complete denture, in terms of denture biofilm removal and antimicrobial action. MATERIAL AND METHODS: Forty complete denture wearers (14 men and 26 women) with a mean age of 62.3±9.0 years were randomly assigned to two groups and were instructed to clean their dentures according to two methods: brushing (control) - 3 times a day with denture brush and tap water following meals; brushing and immersion (Experimental) - brushing the denture 3 times a day with denture brush and tap water following meals and immersion of the denture in NitrAdineTM-based denture tablets (Medical InterporousTM). Each method was used for 21 days. Denture biofilm was disclosed by a 1% neutral red solution and quantified by means of digital photos taken from the internal surface before and after the use of the product. Microbiological assessment was conducted to quantify Candida sp. RESULTS: An independent t-test revealed a significant lower biofilm percentage for the experimental group (4.7, 95% CI 2.4 to 7.9) in comparison with the control group (mean 37.5, 95% CI 28.2 to 48.1) (t38=7.996, p<0.001). A significant reduction of yeast colony forming units could be found after treatment with Medical InterporousTM denture tablets as compared to the control group (Mann-Whitney test, Z=1.90; p<0.05). CONCLUSION: The present findings suggest that NitrAdineTM-based disinfecting cleaning tablets are efficient in removal of denture biofilm. In addition, a clear antimicrobial action was demonstrated. Therefore, they should be recommended as a routine denture maintenance method for the prevention of the development of microbial biofilm induced denture stomatitis.
Resumo:
A wide variety of opportunistic pathogens has been detected in the tubing supplying water to odontological equipment, in special in the biofilm lining of these tubes. Among these pathogens, Pseudomonas aeruginosa, one of the leading causes of nosocomial infections, is frequently found in water lines supplying dental units. In the present work, 160 samples of water, and 200 fomite samples from forty dental units were collected in the city of Barretos, State of São Paulo, Brazil and evaluated between January and July, 2005. Seventy-six P. aeruginosa strains, isolated from the dental environment (5 strains) and water system (71 strains), were tested for susceptibility to six antimicrobial drugs most frequently used against P. aeruginosa infections. Susceptibility to ciprofloxacin, followed by meropenem was the predominant profile. The need for effective means of reducing the microbial burden within dental unit water lines is emphasized, and the risk of exposure and cross-infection in dental practice, in special when caused by opportunistic pathogens like P. aeruginosa, are highlighted.
Resumo:
Aggregatibacter actinomycetemcomitans is an important etiologic agent of the periodontitis and is associated with extra-oral infections. In this study, the detection of the ltxA gene as well as the ltx promoter region from leukotoxic A. actinomycetemcomitans isolated from 50 Brazilian patients with periodontitis and 50 healthy subjects was performed. The leukotoxic activity on HL-60 cells was also evaluated. Leukotoxic activity was determined using a trypan blue exclusion method. The 530 bp deletion in the promoter region was evaluated by PCR using a PRO primer pair. A. actinomycetemcomitans was detected by culture and directly from crude subgingival biofilm by PCR using specific primers. By culture, A. actinomycetemcomitans was detected in nine (18%) of the periodontal patients and one (2%) healthy subject. However, by PCR, this organism was detected in 44% of the periodontal patients and in 16% of the healthy subjects. It was verified a great discrepancy between PCR detection of the ltx operon promoter directly from crude subgingival biofilm and from bacterial DNA. Only one periodontal sample harbored highly leukotoxic A. actinomycetemcomitans. Moreover, biotype II was the most prevalent and no correlation between biotypes and leukotoxic activity was observed. The diversity of leukotoxin expression by A. actinomycetemcomitans suggests a role of this toxin in the pathogenesis of periodontal disease and other infectious diseases.
Resumo:
This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA® anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the eletrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L-1), nitrate ions (6 mg L-1) and nitrite ions (4.5 mg L-1).
Resumo:
Three technologies were tested (TiO2/UV, H2O2/UV, and TiO2/H2O2/UV) for the degradation and color removal of a 25 mg L-1 mixture of three acid dyes: Blue 9, Red 18, and Yellow 23. A low speed rotating disc reactor (20 rpm) and a H2O2 concentration of 2.5 mmol L-1 were used. The dyes did not significantly undergo photolysis, although they were all degraded by the studied advanced oxidation processes. With the TiO2/H2O2/UV process, a strong synergism was observed (color removal reached 100%). Pseudo first order kinetic constants were estimated for all processes, as well as the respective apparent photonic efficiencies.
Resumo:
The aim of this study was to evaluate the ability of the BANA Test to detect different levels of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia or their combinations in subgingival samples at the initial diagnosis and after periodontal therapy. Periodontal sites with probing depths between 5-7 mm and clinical attachment level between 5-10 mm, from 53 subjects with chronic periodontitis, were sampled in four periods: initial diagnosis (T0), immediately (T1), 45 (T2) and 60 days (T3) after scaling and root planing. BANA Test and Checkerboard DNA-DNA hybridization identified red complex species in the subgingival biofilm. In all experimental periods, the highest frequencies of score 2 (Checkerboard DNA-DNA hybridization) for P. gingivalis, T. denticola and T. forsythia were observed when strong enzymatic activity (BANA) was present (p < 0.01). The best agreement was observed at initial diagnosis. The BANA Test sensitivity was 95.54% (T0), 65.18% (T1), 65.22% (T2) and 50.26% (T3). The specificity values were 12.24% (T0), 57.38% (T1), 46.27% (T2) and 53.48% (T3). The BANA Test is more effective for the detection of red complex pathogens when the bacterial levels are high, i.e. in the initial diagnosis of chronic periodontitis.
Resumo:
The bioethanol industry expects a huge expansion and new technologies are being implemented with the aim of optimizing the fermentation process. The behavior of cells of Saccharomyces cerevisiae immobilized in PVA-LentiKats, during the production of bioethanol in two reactor systems, was studied. The entrapped cell in LentiKats lenses showed a different profile using stirred tank reactor (STR) and packed column reactor (PCR). Low free cells accumulation in the medium was observed for the STR after 72 h of fermentation. On the other hand, no free cells accumulation was observed, probably due to the absence of mechanical agitation in PCR configuration. Better fermentation results were obtained working with STR (final cellular concentration = 13 g.L-1, Pf = 28 g.L-1, Qp = 1.17 g.L-1.h-1,and Yp/s = 0.3 g.g-1) in comparison to PCR (final cellular concentration = 11.4 g.L-1, Pf = 20 g.L-1, Qp = 0.83 g.L-1.h-1,and Yp/s = 0.25 g.g-1). Such results are probably due to the mechanical agitation of the medium provided by STR configuration, which permitted a better heat and mass transference.
Resumo:
Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.
Resumo:
Groundnut shell (GS), after separation of pod, is readily available as a potential feedstock for production of fermentable sugars. The substrate was delignified with sodium sulfite. The delignified substrate released 670 mg/g of sugars after enzymatic hydrolysis (50 degrees C, 120 rpm, 50 hrs) using commercial cellulases (Dyadic Xylanase PLUS, Dyadic Inc. USA). The groundnut shell enzymatic hydrolysate (45.6 g/L reducing sugars) was fermented for ethanol production with free and sorghum stalks immobilized cells of Pichia stipitis NCIM 3498 under submerged cultivation conditions. Immobilization of yeast cells on sorghum stalks were confirmed by scanning electron microscopy (SEM). A maximum of ethanol production (17.83 g/L, yield 0.44 g/g and 20.45 g/L, yield 0.47 g/g) was observed with free and immobilized cells of P. stipitis respectively in batch fermentation conditions. Recycling of immobilized cells showed a stable ethanol production (20.45 g/L, yield 0.47 g/g) up to 5 batches followed by a gradual downfall in subsequent cycles.
Resumo:
A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds) were treated with potassium methoxide or ethoxide at 40 degrees C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100 degrees C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit.