973 resultados para NERVOUS-SYSTEM


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Frenchman, Theodore Herpin (1799-1865), in Des Acces Incomplets d'Epilepsie, published posthumously in 1867, provided a very detailed account of a wide range of the possible manifestations of nonconvulsive epileptic seizures. However, he did not note the presence of absence seizures in any of his 300 patients who had experienced, at least in some of their attacks, what he considered were incomplete manifestations of epilepsy, the word epilepsy being taken to refer to full generalized tonic-clonic seizures. In the one patient, Herpin recognized that all epileptic seizures, whether complete or incomplete, began in the same way, and deduced that they must originate in the same place in that patient's brain. He did not develop the latter idea further. His observations, and his interpretation of them, seem to have preceded John Hughlings Jackson's independent development of similar concepts, but Jackson's more extensive intellectual exploration of the implications of his observations made him a more important figure than Herpin in the history of epileptology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we consider the role of abstract models in advancing our understanding of movement pathology. Models of movement coordination and control provide the frameworks necessary for the design and interpretation of studies of acquired and developmental disorders. These models do not however provide the resolution necessary to reveal the nature of the functional impairments that characterise specific movement pathologies. In addition, they do not provide a mapping between the structural bases of various pathologies and the associated disorders of movement. Current and prospective approaches to the study and treatment of movement disorders are discussed. It is argued that the appreciation of structure-function relationships, to which these approaches give rise, represents a challenge to current models of interlimb coordination, and a stimulus for their continued development. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AB Study Design. A cross-sectional study was conducted. Objective. To determine the activity of the deep and superficial fibers of the lumbar multifidus during voluntary movement of the arm. Summary of Background Data. The multifidus contributes to stability of the lumbar spine. Because the deep and superficial parts of the multifidus are near the center of lumbar joint rotation, the superficial fibers are well suited to control spine orientation, and the deep fibers to control intervertebral movement. However, there currently are limited in vivo data to support this distinction. Methods. Electromyographic activity was recorded in both the deep and superficial multifidus, transversus abdominis, erector spinae, and deltoid using selective intramuscular electrodes and surface electrodes during single and repetitive arm movements. The latency of electromyographic onset in each muscle during single movements and the pattern of electromyographic activity during repetitive movements were compared between muscles. Results. With single arm movements, the onset of electromyography in the erector spinae and superficial multifidus relative to the deltoid was dependent on the direction of movement, but the onset in the deep multifidus and transversus abdominis was not. With repetitive arm movements, peaks in superficial multifidus and erector spinae electromyography occurred only during flexion for most subjects, whereas peaks in deep multifidus electromyography occurred during movement in both directions. Conclusions. The deep and superficial fibers of the multifidus are differentially active during single and repetitive movements of the arm. The data from this study support the hypothesis that the superficial multifidus contributes to the control of spine orientation, and that the deep multifidus has a role in controlling intersegmental motion. (C) 2002 Lippincott Williams & Wilkins, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Binding of cell surface carbohydrates to their receptors specifically promotes axon growth and synaptogenesis in select regions of the developing nervous system. In some cases these interactions depend upon cell-cell adhesion mediated by the same glycoconjugates present on the surface of apposing cells or their processes. We have previously shown that the plant lectin Dolichos biflorus agglutinin (DBA) binds to: a subpopulation of mouse primary olfactory neurons whose axons selectively fasciculate prior to terminating in the olfactory bulb. In the present study, we investigated whether these glycoconjugates were also expressed by postsynaptic olfactory neurons specifically within the olfactory pathway. We show here for the first time that DBA ligands were expressed both by a subset of primary olfactory neurons as well as by the postsynaptic mitral/tufted cells in BALB/C mice. These glycoconjugates were first detected on mitral/tufted cell axons during the early postnatal period, at a time when there is considerable synaptogenesis and synaptic remodelling in the primary olfactory cortex. This is one of the few examples of the selective expression of molecules in contiguous axon tracts in the mammalian nervous system. These results suggest that glycoconjugates recognized by DBA may have a specific role in the formation and maintenance of neural connections within a select functional pathway in the brain. J. Comp. Neurol. 443:213-225, 2002. (C) 2002 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The receptor Roundabout-1 (Robo1) and its ligand Slit are known to influence axon guidance and central nervous system (CNS) patterning in both vertebrate and nonvertebrate systems. Although Robo-Slit interactions mediate axon guidance in the Drosophila CNS, their role in establishing the early axon scaffold in the embryonic vertebrate brain remains unclear. We report here the identification and expression of a Xenopus Robo1 orthologue that is highly homologous to mammalian Robo1. By using overexpression studies and immunohistochemical and in situ hybridization techniques, we have investigated the role of Robo1 in the development of a subset of neurons and axon tracts in the Xenopus forebrain. Robo1 is expressed in forebrain nuclei and in neuroepithelial cells underlying the main axon tracts. Misexpression of Robo1 led to aberrant development of axon tracts as well as the ectopic differentiation of forebrain neurons. These results implicate Robo1 in both neuronal differentiation and axon guidance in embryonic vertebrate forebrain. (C) 2002 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of establishing long-range neuronal connections can be divided into at least three discrete steps. First, axons need to be stimulated to grow and this growth must be towards appropriate targets. Second, after arriving at their target, axons need to be directed to their topographically appropriate position and in some cases, such as in cortical structures, they must grow radially to reach the correct laminar layer Third, axons then arborize and form synaptic connections with only a defined subpopulation of potential post-synaptic partners. Attempts to understand these mechanisms in the visual system have been ongoing since pioneer studies in the 1940s highlighted the specificity of neuronal connections in the retino-tectal pathway. These classical systems-based approaches culminated in the 1990s with the discovery that Eph-ephrin repulsive interactions were involved in topographical mapping. In marked contrast, it was the cloning of the odorant receptor family that quickly led to a better understanding of axon targeting in the olfactory system. The last 10 years have seen the olfactory pathway rise in prominence as a model system for axon guidance. Once considered to be experimentally intractable, it is now providing a wealth of information on all aspects of axon guidance and targeting with implications not only for our understanding of these mechanisms in the olfactory system but also in other regions of the nervous system.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the effect of the N-terminal Slit2 protein on neuronal survival and development, recombinant human N-terminal Slit2 (N-Slit2) was assayed against isolated embryonic chick dorsal root ganglion sensory, ciliary ganglion and paravertebral sympathetic neurons. N-Slit2 promoted significant levels of neuronal survival and neurite extension in all of these populations. The protein was also assayed against postnatal mouse dorsal root ganglion neurons and found to promote neuronal survival in a similar manner. These findings suggest the Slit proteins may play an important role during development of the nervous system, mediating cellular survival in addition to the well documented role these proteins play in axonal and neuronal chemorepulsion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optimised gradient reversed-phase high-performance liquid chromatography electrospray ionisation mass spectrometry (LC/MS) methods, in combination with a [H-3]-brevetoxin binding assay (RLB), revealed multiple ciguatoxins in a partially purified extract of a highly toxic Lutjanus sebae (red emperor) from the Indian Ocean. Two major ciguatoxins of 1140.6 Da (I-CTX-1 and -2) and two minor ciguatoxins of 1156.6 Da (I-CTX-3 and -4) were identified. Accurate mass analysis revealed that I-CTX-1 and -2 and Caribbean C-CTX-1 had indistinguishable masses (1140.6316 Da, at 0.44 ppm resolution). Toxicity estimated from LC/MS/RLB responses indicated that I-CTX-1 and -2 were both similar to 60% the potency of Pacific ciguatoxin-1 (P-CTX-1). In contrast to ciguatoxins of the Pacific where the more oxidised ciguatoxins are more potent, I-CTX-3 and -4 were similar to 20% of P-CTX-1 potency. Interconversion in dilute acid or on storage, typical of spiroketal and hemiketal functionality found in P-CTXs and C-CTXs, respectively, was not observed to occur between I-CTX-1 and -2. The ratio of CTX-1 and -2 varied depending on the fish extract being analysed. These results suggest that I-CTX-1 and -2 may arise from separate dinoflagellate precursors that may be oxidatively biotransformed to I-CTX-3 and -4 in fish. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [H-3]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Granulomatous meningoencephalomyelitis (GME) is a morphological description of an inflammatory disorder of the canine central nervous system (CNS). It has been reported in many areas of the world. including Australia, and is one of the more common nervous disorders of dogs. Most breeds of dogs of both sexes and all ages can be affected but young to middle-aged small and terrier breeds have been stated as being more susceptible. There are variable anatomical forms and distribution of the lesions in the CNS; the presenting clinical signs can reflect singly or collectively cerebellar, cerebral, and brain stem dysfunction. Meningeal and spinal cord involvement are also common. There is no specific diagnostic test but a combination of clinical signs, history and cerebro-spinal fluid cytology are useful indicators. However differential diagnosis from other inflammatory disorders of the brain is difficult. No infectious agent aetiology has been established for GME and therefore no satisfactory therapeutic approach is available. The role of the immune system in terms of either initiating or potentiating the lesions in the CNS appears to be the most likely direction for further investigation into the nature of this disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Respiration is altered during different stages of the sleep-wake cycle. We review the contribution of cholinergic systems to this alteration, with particular reference to the role of muscarinic acetylcholine receptors (MAchRs) during rapid eye movement (REM) sleep. Available evidence demonstrates that MAchRs have potent excitatory effects on medullary respiratory neurones and respiratory motoneurones, and are likely to contribute to changes in central chemosensitive drive to the respiratory control system. These effects are likely to be most prominent during REM sleep, when cholinergic brainstem neurones show peak activity levels. It is possible that MAchR dysfunction is involved in sleep-disordered breathing, Such as obstructive sleep apnea. (C) 2002 Elsevier Science B.V. All rights reserved.