831 resultados para Multiport Network Model
Resumo:
The p-medianmodel is commonly used to find optimal locations of facilities for geographically distributed demands. So far, there are few studies that have considered the importance of the road network in the model. However, Han, Håkansson, and Rebreyend (2013) examined the solutions of the p-median model with densities of the road network varying from 500 to 70,000 nodes. They found as the density went beyond some 10,000 nodes, solutions have no further improvements but gradually worsen. The aim of this study is to check their findings by using an alternative heuristic being vertex substitution, as a complement to their using simulated annealing. We reject the findings in Han et al (2013). The solutions do not further improve as the nodes exceed 10,000, but neither do the solutions deteriorate.
Resumo:
Optimal location on the transport infrastructure is the preferable requirement for many decision making processes. Most studies have focused on evaluating performances of optimally locate p facilities by minimizing their distances to a geographically distributed demand (n) when p and n vary. The optimal locations are also sensitive to geographical context such as road network, especially when they are asymmetrically distributed in the plane. The influence of alternating road network density is however not a very well-studied problem especially when it is applied in a real world context. This paper aims to investigate how the density level of the road network affects finding optimal location by solving the specific case of p-median location problem. A denser network is found needed when a higher number of facilities are to locate. The best solution will not always be obtained in the most detailed network but in a middle density level. The solutions do not further improve or improve insignificantly as the density exceeds 12,000 nodes, some solutions even deteriorate. The hierarchy of the different densities of network can be used according to location and transportation purposes and increase the efficiency of heuristic methods. The method in this study can be applied to other location-allocation problem in transportation analysis where the road network density can be differentiated.
Resumo:
To have good data quality with high complexity is often seen to be important. Intuition says that the higher accuracy and complexity the data have the better the analytic solutions becomes if it is possible to handle the increasing computing time. However, for most of the practical computational problems, high complexity data means that computational times become too long or that heuristics used to solve the problem have difficulties to reach good solutions. This is even further stressed when the size of the combinatorial problem increases. Consequently, we often need a simplified data to deal with complex combinatorial problems. In this study we stress the question of how the complexity and accuracy in a network affect the quality of the heuristic solutions for different sizes of the combinatorial problem. We evaluate this question by applying the commonly used p-median model, which is used to find optimal locations in a network of p supply points that serve n demand points. To evaluate this, we vary both the accuracy (the number of nodes) of the network and the size of the combinatorial problem (p). The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 supply points we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000 (which is aggregated from the 1.5 million nodes). To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when the accuracy in the road network increase and the combinatorial problem (low p) is simple. When the combinatorial problem is complex (large p) the improvements of increasing the accuracy in the road network are much larger. The results also show that choice of the best accuracy of the network depends on the complexity of the combinatorial (varying p) problem.
Resumo:
Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
This project constructs a structural model of the United States Economy. This task is tackled in two separate ways: first econometric methods and then using a neural network, both with a structure that mimics the structure of the U.S. economy. The structural model tracks the performance of U.S. GDP rather well in a dynamic simulation, with an average error of just over 1 percent. The neural network performed well, but suffered from some theoretical, as well as some implementation issues.