845 resultados para Multiple subspace learning
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
At QUT research data refers to information that is generated or collected to be used as primary sources in the production of original research results, and which would be required to validate or replicate research findings (Callan, De Vine, & Baker, 2010). Making publicly funded research data discoverable by the broader research community and the public is a key aim of the Australian National Data Service (ANDS). Queensland University of Technology (QUT) has been innovating in this space by undertaking mutually dependant technical and content (metadata) focused projects funded by ANDS. Research Data Librarians identified and described datasets generated from Category 1 funded research at QUT, by interviewing researchers, collecting metadata and fashioning metadata records for upload to the Australian Research Data commons (ARDC) and exposure through the Research Data Australia interface. In parallel to this project, a Research Data Management Service and Metadata hub project were being undertaken by QUT High Performance Computing & Research Support specialists. These projects will collectively store and aggregate QUT’s metadata and research data from multiple repositories and administration systems and contribute metadata directly by OAI-PMH compliant feed to RDA. The pioneering nature of the work has resulted in a collaborative project dynamic where good data management practices and the discoverability and sharing of research data were the shared drivers for all activity. Each project’s development and progress was dependent on feedback from the other. The metadata structure evolved in tandem with the development of the repository and the development of the repository interface responded to meet the needs of the data interview process. The project environment was one of bottom-up collaborative approaches to process and system development which matched top-down strategic alliances crossing organisational boundaries in order to provide the deliverables required by ANDS. This paper showcases the work undertaken at QUT, focusing on the Seeding the Commons project as a case study, and illustrates how the data management projects are interconnected. It describes the processes and systems being established to make QUT research data more visible and the nature of the collaborations between organisational areas required to achieve this. The paper concludes with the Seeding the Commons project outcomes and the contribution this project made to getting more research data ‘out there’.
Resumo:
-
Resumo:
Internationally the railway industry is facing a severe shortage of engineers with high level, relevant, profession and technical knowledge and abilities, in particular amongst engineers involved in the design, construction and maintenance of railway infrastructure. A unique graduate level program has been created to meet that global need via a fully online, distance education format. The development and operation of this Master of Engineering degree is proposed as a model of the process needed for the industry-relevance, flexible delivery, international networking, and professional development required for a successful graduate engineering program in the 21st century. In particular, the paper demonstrates how a mix of new and more familiar technologies are utilised through a variety of tasks to overcome the huge distances and multiple time zones that separate the participants across a growing number of countries, successfully achieving close and sustained interaction amongst the participants and railway experts.
Resumo:
This study explored youth caregiving for a parent with multiple sclerosis (MS) from multiple perspectives, and examined associations between caregiving and child negative (behavioural emotional difficulties, somatisation) and positive (life satisfaction, positive affect, prosocial behaviour) adjustment outcomes overtime. A total of 88 families participated; 85 parents with MS, 55 partners and 130 children completed questionnaires at Time 1. Child caregiving was assessed by the Youth Activities of Caregiving Scale (YACS). Child and parent questionnaire data were collected at Time 1 and child data were collected 12 months later (Time 2). Factor analysis of the child and parent YACS data replicated the four factors (instrumental, social-emotional, personal-intimate, domestic-household care), all of which were psychometrically sound. The YACS factors were related to parental illness and caregiving context variables that reflected increased caregiving demands. The Time 1 instrumental and social-emotional care domains were associated with poorer Time 2 adjustment, whereas personal-intimate was related to better adjustment and domestic-household care was unrelated to adjustment. Children and their parents exhibited highest agreement on personal-intimate, instrumental and total caregiving, and least on domestic-household and social-emotional care. Findings delineate the key dimensions of young caregiving in MS and the differential links between caregiving activities and youth adjustment.
Resumo:
Teacher quality is recognised as a lynchpin for education reforms internationally, and both Federal and State governments in Australia have turned their attention to teacher education institutions: the starting point for preparing quality teachers. Changes to policy and shifts in expectations impact on Faculties of Education, despite the fact that little is known about what makes a quality teacher preparation program effective. New accountability measures, mandated Professional Standards, and proposals to test all graduates before registration, mean that teacher preparation programs need capacity for flexibility and responsiveness. The risk is that undergraduate degree programs can become ‘patchwork quilts’ with traces of the old and new stitched together, sometimes at the expense of coherence and integrity. This paper provides a roadmap used by one large Faculty of Education in Queensland for reforming and reconceptualising the curriculum for a 4-year undergraduate program, in response to new demands from government and the professional bodies.
Resumo:
An approach aimed at enhancing learning by matching individual students' preferred cognitive styles to computer-based instructional (CBI) material is presented. This approach was used in teaching some components of a third-year unit in an electrical engineering course at the Queensland University of Technology. Cognitive style characteristics of perceiving and processing information were considered. The bimodal nature of cognitive styles (analytic/imager, analytic/verbalizer, wholist/imager and wholist/verbalizer) was examined in order to assess the full ramification of cognitive styles on learning. In a quasi-experimental format, students' cognitive styles were analysed by cognitive style analysis (CSA) software. On the basis of the CSA results the system defaulted students to either matched or mismatched CBI material. The consistently better performance by the matched group suggests potential for further investigations where the limitations cited in this paper are eliminated. Analysing the differences between cognitive styles on individual test tasks also suggests that certain test tasks may better suit certain cognitive styles.
Resumo:
This paper reports two studies designed to investigate the effect on learning outcomes of matching individuals' preferred cognitive styles to computer-based instructional (CBI) material. Study 1 considered the styles individually as Verbalizer, Imager, Wholist and Analytic. Study 2 considered the bi-dimensional nature of cognitive styles in order to assess the full ramification of cognitive styles on learning: Analytic/Imager, Analytic/ Verbalizer, Wholist/Imager and the Wholist/Verbalizer. The mix of images and text, the nature of the text material, use of advance organizers and proximity of information to facilitate meaningful connections between various pieces of information were some of the considerations in the design of the CBI material. In a quasi-experimental format, students' cognitive styles were analysed by Cognitive Style Analysis (CSA) software. On the basis of the CSA result, the system defaulted students to either matched or mismatched CBI material by alternating between the two formats. The instructional material had a learning and a test phase. Learning outcome was tested on recall, labelling, explanation and problem-solving tasks. Comparison of the matched and mismatched instruction did not indicate significant difference between the groups, but the consistently better performance by the matched group suggests potential for further investigations where the limitations cited in this paper are eliminated. The result did indicate a significant difference between the four cognitive styles with the Wholist/Verbalizer group performing better then all other cognitive styles. Analysing the difference between cognitive styles on individual test tasks indicated significant difference on recall, labelling and explanation, suggesting that certain test tasks may suit certain cognitive styles.
Resumo:
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.
Resumo:
Record 8 of 29
Resumo:
This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.
Resumo:
In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should greatly help with the autonomous identification of natural and manmade objects in unfamiliar terrains for robotic vehicles. However, the large information content of such data makes interpretation of hyperspectral images time-consuming and userintensive. We propose the use of Isomap, a non-linear manifold learning technique combined with Expectation Maximisation in graphical probabilistic models for learning and classification. Isomap is used to find the underlying manifold of the training data. This low dimensional representation of the hyperspectral data facilitates the learning of a Gaussian Mixture Model representation, whose joint probability distributions can be calculated offline. The learnt model is then applied to the hyperspectral image at runtime and data classification can be performed.
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.
Resumo:
The impact of digital technology within the creative industries has brought with it a range of new opportunities for collaborative, cross-disciplinary and multi-disciplinary practice. Along with these opportunities has come the need to re-evaluate how we as educators approach teaching within this new digital culture. Within the field of animation, there has been a radical shift in the expectations of students, industry and educators as animation has become central to a range of new moving image practices. This paper interrogates the effectiveness of adopting a studio-based collaborative production project as a method for educating students within this new moving-image culture. The project was undertaken, as part of the Creative Industries Transitions to New Professional Environments program at Queensland University of Technology (QUT) in Brisbane Australia. A number of students studying across the Creative Industries Faculty and the Faculty of Science and Technology were invited to participate in the development of a 3D animated short film. The project offered students the opportunity to become actively involved in all stages of the creative process, allowing them to experience informal learning through collaborative professional practice. It is proposed that theoretical principles often associated with andragogy and constructivism can be used to design and deliver programs that address the emerging issues surrounding the teaching of this new moving image culture.
Resumo:
A protein-truncating variant of CHEK2, 1100delC, is associated with a moderate increase in breast cancer risk. We have determined the prevalence of this allele in index cases from 300 Australian multiple-case breast cancer families, 95% of which had been found to be negative for mutations in BRCA1 and BRCA2. Only two (0.6%) index cases heterozygous for the CHEK2 mutation were identified. All available relatives in these two families were genotyped, but there was no evidence of co-segregation between the CHEK2 variant and breast cancer. Lymphoblastoid cell lines established from a heterozygous carrier contained approximately 20% of the CHEK2 1100delC mRNA relative to wild-type CHEK2 transcript. However, no truncated CHK2 protein was detectable. Analyses of expression and phosphorylation of wild-type CHK2 suggest that the variant is likely to act by haploinsufficiency. Analysis of CDC25A degradation, a downstream target of CHK2, suggests that some compensation occurs to allow normal degradation of CDC25A. Such compensation of the 1100delC defect in CHEK2 might explain the rather low breast cancer risk associated with the CHEK2 variant, compared to that associated with truncating mutations in BRCA1 or BRCA2.