992 resultados para Multiple Endocrine Neoplasia
Resumo:
We report an InGaAsP/InP MQW phase modulator operating over the entire 1.55μm fiber band with high phase modulation efficiency and low loss modulation. The spectral dependence of the electro-refraction in a MQW structure is measured for the first time.
Resumo:
Simultaneous recording from multiple single neurones presents many technical difficulties. However, obtaining such data has many advantages, which make it highly worthwhile to overcome the technical problems. This report describes methods which we have developed to permit recordings in awake behaving monkeys using the 'Eckhorn' 16 electrode microdrive. Structural magnetic resonance images are collected to guide electrode placement. Head fixation is achieved using a specially designed headpiece, modified for the multiple electrode approach, and access to the cortex is provided via a novel recording chamber. Growth of scar tissue over the exposed dura mater is reduced using an anti-mitotic compound. Control of the microdrive is achieved by a computerised system which permits several experimenters to move different electrodes simultaneously, considerably reducing the load on an individual operator. Neurones are identified as pyramidal tract neurones by antidromic stimulation through chronically implanted electrodes; stimulus control is integrated into the computerised system. Finally, analysis of multiple single unit recordings requires accurate methods to correct for non-stationarity in unit firing. A novel technique for such correction is discussed.
Resumo:
Skillful tool use requires knowledge of the dynamic properties of tools in order to specify the mapping between applied force and tool motion. Importantly, this mapping depends on the orientation of the tool in the hand. Here we investigate the representation of dynamics during skillful manipulation of a tool that can be grasped at different orientations. We ask whether the motor system uses a single general representation of dynamics for all grasp contexts or whether it uses multiple grasp-specific representations. Using a novel robotic interface, subjects rotated a virtual tool whose orientation relative to the hand could be varied. Subjects could immediately anticipate the force direction for each orientation of the tool based on its visual geometry, and, with experience, they learned to parameterize the force magnitude. Surprisingly, this parameterization of force magnitude showed limited generalization when the orientation of the tool changed. Had subjects parameterized a single general representation, full generalization would be expected. Thus, our results suggest that object dynamics are captured by multiple representations, each of which encodes the mapping associated with a specific grasp context. We suggest that the concept of grasp-specific representations may provide a unifying framework for interpreting previous results related to dynamics learning.
Resumo:
Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.
Resumo:
Sea turtles are subjected to involuntary submergence and potential mortality due to incidental capture by the commercial shrimp fishing industry. Despite implementation of turtle excluder devices (TEDs) to reduce at-sea mortality, dead stranded turtles continue to be found in near-record numbers along the coasts of the western Atlantic Ocean and northern Gulf of Mexico. Although this mortality may be due to an increase in the number of turtles available to strand, one alternative explanation is that sea turtles are repetitively submerged (as one fishing vessel follows the path of another) in legal TEDs. In the present study, laboratory and field investigations were undertaken to examine the physiological effects of multiple submergence of loggerhead sea turtles (Caretta caretta). Turtles in the laboratory study were confined during the submersion episodes, whereas under field conditions, turtles were released directly into TED-equipped commercial fishing nets. Under laboratory and field conditions, pre- and postsubmergence blood samples were collected from turtles submerged three times at 7.5 min per episode with an in-water rest interval of 10, 42, or 180 min between submergences. Analyses of pre- and postsubmergence blood samples revealed that the initial submergence produced a severe and pronounced metabolic and respiratory acidosis in all turtles. Successive submergences produced significant changes in blood pH, Pco2, and lactate, although the magnitude of the acid-base imbalance was substantially reduced as the number of submergences increased. In addition, increasing the interval between successive submergences permitted greater recovery of blood homeostasis. No turtles died during these studies. Taken together, these data suggest that repetitive sub-mergence of sea turtles in TEDs would not significantly affect their survival potential provided that the animal has an adequate rest interval at the surface between successive submergences.
Resumo:
Marine mammal diet is typically characterized by identifying fish otoliths and cephalopod beaks retrieved from stomachs and fecal material (scats). The use and applicability of these techniques has been the matter of some debate given inherent biases associated with the method. Recent attempts to identify prey using skeletal remains in addition to beaks and otoliths are an improvement; however, difficulties incorporating these data into quantitative analyses have limited results for descriptive analyses such as frequency of occurrence. We attempted to characterize harbor seal (Phoca vitulina) diet in an area where seals co-occur with several salmon species, some endangered and all managed by state or federal agencies, or both. Although diet was extremely variable within sampling date, season, year, and between years, the frequency and number of individual prey were at least two times greater for most taxa when prey structures in addition to otoliths were identified. Estimating prey mass in addition to frequency and number resulted in an extremely different relative importance of prey in harbor seal diet. These data analyses are a necessary step in generating estimates of the size, total number, and annual biomass of a prey species eaten by pinnipeds for inclusion in fisheries management plans.