879 resultados para Multi-criteria decision analysis
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The study aimed to examine the factors influencing referral to rehabilitation following traumatic brain injury (TBI) by using social problems theory as a conceptual model to focus on practitioners and the process of decision-making in two Australian hospitals. The research design involved semi-structured interviews with 18 practitioners and observations of 10 team meetings, and was part of a larger study on factors influencing referral to rehabilitation in the same settings. Analysis revealed that referral decisions were influenced primarily by practitioners' selection and their interpretation of clinical and non-clinical patient factors. Further, practitioners generally considered patient factors concurrently during an ongoing process of decision-making, with the combinations and interactions of these factors forming the basis for interpretations of problems and referral justifications. Key patient factors considered in referral decisions included functional and tracheostomy status, time since injury, age, family, place of residence and Indigenous status. However, rate and extent of progress, recovery potential, safety and burden of care, potential for independence and capacity to cope were five interpretative themes, which emerged as the justifications for referral decisions. The subsequent negotiation of referral based on patient factors was in turn shaped by the involvement of practitioners. While multi-disciplinary processes of decision-making were the norm, allied health professionals occupied a central role in referral to rehabilitation, and involvement of medical, nursing and allied health practitioners varied. Finally, the organizational pressures and resource constraints, combined with practitioners' assimilation of the broader efficiency agenda were central factors shaping referral. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This study represents the first application of multi-way calibration by N-PLS and multi-way curve resolution by PARAFAC to 2D diffusion-edited H-1 NMR spectra. The aim of the analysis was to evaluate the potential for quantification of lipoprotein main- and subtractions in human plasma samples. Multi-way N-PLS calibrations relating the methyl and methylene peaks of lipoprotein lipids to concentrations of the four main lipoprotein fractions as well as 11 subfractions were developed with high correlations (R = 0.75-0.98). Furthermore, a PARAFAC model with four chemically meaningful components was calculated from the 2D diffusion-edited spectra of the methylene peak of lipids. Although the four extracted PARAFAC components represent molecules of sizes that correspond to the four main fractions of lipoproteins, the corresponding concentrations of the four PARAFAC components proved not to be correlated to the reference concentrations of these four fractions in the plasma samples as determined by ultracentrifugation. These results indicate that NMR provides complementary information on the classification of lipoprotein fractions compared to ultracentrifugation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Wireless Mesh Networks (WMNs), based on commodity hardware, present a promising technology for a wide range of applications due to their self-configuring and self-healing capabilities, as well as their low equipment and deployment costs. One of the key challenges that WMN technology faces is the limited capacity and scalability due to co-channel interference, which is typical for multi-hop wireless networks. A simple and relatively low-cost approach to address this problem is the use of multiple wireless network interfaces (radios) per node. Operating the radios on distinct orthogonal channels permits effective use of the frequency spectrum, thereby, reducing interference and contention. In this paper, we evaluate the performance of the multi-radio Ad-hoc On-demand Distance Vector (AODV) routing protocol with a specific focus on hybrid WMNs. Our simulation results show that under high mobility and traffic load conditions, multi-radio AODV offers superior performance as compared to its single-radio counterpart. We believe that multi-radio AODV is a promising candidate for WMNs, which need to service a large number of mobile clients with low latency and high bandwidth requirements.
Resumo:
Several parties (stakeholders) are involved in a construction project. The conventional Risk Management Process (RMP) manages risks from a single party perspective, which does not give adequate consideration to the needs of others. The objective of multi-party risk management is to assist decision-makers in managing risk systematically and most efficiently in a multi-party environment. Multi-party Risk Management Processes (MRMP) consist of risk identification, structuring, analysis and developing responses from all party perspectives. The MRMP has been applied to a cement plant construction project in Thailand to demonstrate its effectiveness.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
Data envelopment analysis defines the relative efficiency of a decision making unit (DMU) as the ratio of the sum of its weighted outputs to the sum of its weighted inputs allowing the DMUs to freely allocate weights to their inputs/outputs. However, this measure may not reflect a DMU's true efficiency as some inputs/outputs may not contribute reasonably to the efficiency measure. Traditionally, to overcome this problem weights restrictions have been imposed. This paper offers a new approach to this problem where DMUs operate a constant returns to scale technology in a single input multi-output context. The approach is based on introducing unobserved DMUs, created by adjusting the output levels of certain observed relatively efficient DMUs, reflecting a combination of technical information of feasible production levels and the DM's value judgments. Its main advantage is that the information conveyed by the DM is local, with reference to a specific observed DMU. The approach is illustrated on a real life application. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Studies of the determinants and effects of innovation commonly make an assumption about the way in which firms make the decision to innovate, but rarely test this assumption. Using a panel of Irish manufacturing firms we test the performance of two alternative models of the innovation decision, and find that a two-stage model (the firm decides whether to innovate, then whether to perform product only, process only or both) outperforms a one-stage, simultaneous model. We also find that external knowledge sourcing affects the innovation decision and the type of innovation undertaken in a way not previously recognised in the literature. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.