839 resultados para Multi processor systems
Resumo:
O objetivo deste estudo foi avaliar ex vivo a extrusão bacteriana apical após instrumentação mecanizada com sistemas reciprocantes de instrumento único e movimento reciprocante (WaveOne and Reciproc) comparados a um sistema multi-instrumentos (BioRaCe). Quarenta e cinco incisivos inferiores humanos unirradiculares, ovais e de anatomia semelhante foram utilizados. Os dentes foram acessados e seus canais radiculares foram contaminados com uma suspensão de Enterococcus faecalis e incubados por 30 dias possibilitando crescimento bacteriano em biofilme. Os dentes contaminados foram divididos em três grupos com 15 espécimes cada (RE - Reciproc, WO -WaveOne e BR - BioRaCe). Foram utilizados oito dentes para grupos controle de crescimento bacteriano positivo e negativo. As bactérias extruídas apicalmente durante a instrumentação foram coletadas em frascos de vidro contendo 0,9% de NaCl. As amostras microbiológicas foram retiradas dos frascos e incubadas em meio BHI ágar, durante 24 horas. O crescimento bacteriano foi contado e os resultados foram expressos em unidades formadoras de colônia (UFC). Os dados foram analisados pelos testes estatísticos de Wilcoxon e Kruskal-Wallis. Não houve diferença estatisticamente significante no número de UFC entre os dois sistemas reciprocantes (p>0,05). Em contrapartida, o sistema de instrumentos rotatórios mostrou uma quantidade de UFC significativamente maior do que os dois outros grupos (p <0,05). A partir da análise dos resultados e dentro das limitações deste estudo foi possível concluir que todos os sistemas de instrumentação testados extruem bactérias apicalmente. No entanto, ambos os sistemas de instrumento único e movimento reciprocante extruem menos bactérias apicalmente do que o sistema rotatório multi-instrumentos de referência.
Resumo:
As biometrias vêm sendo utilizadas como solução de controle de acesso a diversos sistemas há anos, mas o simples uso da biometria não pode ser considerado como solução final e perfeita. Muitos riscos existem e não devem ser ignorados. A maioria dos problemas está relacionada ao caminho de transmissão entre o local onde os usuários requerem seus acessos e os servidores onde são guardados os dados biométricos capturados em seu cadastro. Vários tipos de ataques podem ser efetuados por impostores que desejam usar o sistema indevidamente. Além dos aspectos técnicos, existe o aspecto social. É crescente a preocupação do usuário tanto com o armazenamento quanto o uso indevido de suas biometrias, pois é um identificador único e, por ser invariável no tempo, pode ser perdido para sempre caso seja comprometido. O fato de que várias empresas com seus diferentes servidores guardarem as biometrias está causando incomodo aos usuários, pois as torna mais suscetíveis à ataques. Nesta dissertação, o uso de cartões inteligentes é adotado como possível solução para os problemas supracitados. Os cartões inteligentes preparados para multi-aplicações são usados para realizar as comparações biométricas internamente. Dessa forma, não seria mais necessário utilizar diversos servidores, pois as características biométricas estarão sempre em um único cartão em posse do dono. Foram desenvolvidas e implementadas três diferentes algoritmos de identificação biométrica utilizando diferentes características: impressão digital, impressão da palma da mão e íris. Considerando a memória utilizada, tempo médio de execução e acurácia, a biometria da impressão da palma da mão obteve os melhores resultados, alcançando taxas de erro mínimas e tempos de execução inferiores a meio segundo.
Resumo:
Aquatic agricultural systems (AAS) are systems in which the annual production dynamics of freshwater and/or coastal ecosystems contribute significantly to total household income. Improving the livelihood security and wellbeing of the estimated 250 million poor people dependent on AAS in Bangladesh, Cambodia, the Philippines, the Solomon Islands and Zambia is the goal of the Worldfish Center-led Consortium Research Program (CRP), “Harnessing the development potential of aquatic agricultural systems for development.” One component expected to contribute to sustainably achieving this goal is enhancing the gender and wider social equity of the social, economic and political systems within which the AAS function. The CRP’s focus on social equity, and particularly gender equity, responds to the limited progress to date in enhancing the inclusiveness of development outcomes through interventions that offer improved availability of resources and technologies without addressing the wider social constraints that marginalized populations face in making use of them. The CRP aims to both offer improved availability and address the wider social constraints in order to determine whether a multi-level approach that engages with individuals, households and communities, as well as the wider social, economic and political contexts in which they function, is more successful in extending development’s benefits to women and other excluded groups. Designing the research in development initiatives to test this hypothesis requires a solid understanding of each CRP country’s social, cultural and economic contexts and of the variations across them. This paper provides an initial input into developing this knowledge, based on a review of literature on agriculture, aquaculture and gender relations within the five focal countries. Before delving into the findings of the literature review, the paper first justifies the expectation that successfully achieving lasting wellbeing improvements for poor women and men dependent on AAS rests in part on advances in gender equity, and in light of this justification, presents the AAS CRP’s conceptual framew
Resumo:
Social interactions in classic cognitive games like the ultimatum game or the prisoner's dilemma typically lead to Nash equilibria when multiple competitive decision makers with perfect knowledge select optimal strategies. However, in evolutionary game theory it has been shown that Nash equilibria can also arise as attractors in dynamical systems that can describe, for example, the population dynamics of microorganisms. Similar to such evolutionary dynamics, we find that Nash equilibria arise naturally in motor interactions in which players vie for control and try to minimize effort. When confronted with sensorimotor interaction tasks that correspond to the classical prisoner's dilemma and the rope-pulling game, two-player motor interactions led predominantly to Nash solutions. In contrast, when a single player took both roles, playing the sensorimotor game bimanually, cooperative solutions were found. Our methodology opens up a new avenue for the study of human motor interactions within a game theoretic framework, suggesting that the coupling of motor systems can lead to game theoretic solutions.
Resumo:
This paper describes the development of an automated design optimization system that makes use of a high fidelity Reynolds-Averaged CFD analysis procedure to minimize the fan forcing and fan BOGV (bypass outlet guide vane) losses simultaneously taking into the account the down-stream pylon and RDF (radial drive fairing) distortions. The design space consists of the OGV's stagger angle, trailing-edge recambering, axial and circumferential positions leading to a variable pitch optimum design. An advanced optimization system called SOFT (Smart Optimisation for Turbomachinery) was used to integrate a number of pre-processor, simulation and in-house grid generation codes and postprocessor programs. A number of multi-objective, multi-point optimiztion were carried out by SOFT on a cluster of workstations and are reported herein.
Resumo:
We present a new software framework for the implementation of applications that use stencil computations on block-structured grids to solve partial differential equations. A key feature of the framework is the extensive use of automatic source code generation which is used to achieve high performance on a range of leading multi-core processors. Results are presented for a simple model stencil running on Intel and AMD CPUs as well as the NVIDIA GT200 GPU. The generality of the framework is demonstrated through the implementation of a complete application consisting of many different stencil computations, taken from the field of computational fluid dynamics. © 2010 IEEE.
Resumo:
Pile reuse has become an increasingly popular option in foundation design, mainly due to its potential cost and environmental benefits and the problem of underground congestion in urban areas. However, key geotechnical concerns remain regarding the behavior of reused piles and the modeling of foundation systems involving old and new piles to support building loads of the new structure. In this paper, a design and analysis tool for pile reuse projects will be introduced. The tool allows coupling of superstructure stiffness with the foundation model, and includes an optimization algorithm to obtain the best configuration of new piles to work alongside reused piles. Under the concept of Pareto Optimality, multi-objective optimization analyses can also reveal the relationship between material usage and the corresponding foundation performance, providing a series of reuse options at various foundation costs. The components of this analysis tool will be discussed and illustrated through a case history in London, where 110 existing piles are reused at a site to support the proposed new development. The case history reveals the difficulties faced by foundation reuse in urban areas and demonstrates the application of the design tool to tackle these challenges. © ASCE 2011.
Resumo:
Optimisation of cooling systems within gas turbine engines is of great interest to engine manufacturers seeking gains in performance, efficiency and component life. The effectiveness of coolant delivery is governed by complex flows within the stator wells and the interaction of main annulus and cooling air in the vicinity of the rim seals. This paper reports the development of a test facility which allows the interaction of cooling air and main gas paths to be measured at conditions representative of those found in modern gas turbine engines. The test facility features a two stage turbine with an overall pressure ratio of approximately 2.6:1. Hot air is supplied to the main annulus using a Rolls-Royce Dart compressor driven by an aero-derivative engine plant. Cooling air can be delivered to the stator wells at multiple locations and at a range of flow rates which cover bulk ingestion through to bulk egress. The facility has been designed with adaptable geometry to enable rapid changes of cooling air path configuration. The coolant delivery system allows swift and accurate changes to the flow settings such that thermal transients may be performed. Particular attention has been focused on obtaining high accuracy data, using a radio telemetry system, as well as thorough through-calibration practices. Temperature measurements can now be made on both rotating and stationary discs with a long term uncertainty in the region of 0.3 K. A gas concentration measurement system has also been developed to obtain direct measurement of re-ingestion and rim seal exchange flows. High resolution displacement sensors have been installed in order to measure hot running geometry. This paper documents the commissioning of a test facility which is unique in terms of rapid configuration changes, non-dimensional engine matching and the instrumentation density and resolution. Example data for each of the measurement systems is presented. This includes the effect of coolant flow rate on the metal temperatures within the upstream cavity of the turbine stator well, the axial displacement of the rotor assembly during a commissioning test, and the effect of coolant flow rate on mixing in the downstream cavity of the stator well. Copyright © 2010 by ASME.
Resumo:
In new product development, the ability to integrate different dimensions of sustainability at a value chain level is still a complex, problematic goal. As product-service approaches are increasingly enabling the introduction of more sustainable paths, this paper describes the authors' experience thus far when building insights into conditions for the implementation of integrated solutions in a process of co-development and testing in real life conditions, which are driven by a social need focusing on food for people with reduced access. Throughout this process, which brought together producers, consumers and other stakeholders to design and test industrialised, sustainable solutions, empirical evidence demonstrates feasibility and usefulness of the approach and insight into the conditions for implementing interactive, comprehensive multi-stakeholder processes in real life situations. In addition, results show that the delivery of innovative solutions enabled to offer social added value, economic profits and environmental improvements under specific experimental conditions. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper shows that film bulk acoustic resonator (FBAR) arrays can be very useful sensors either to detect physical parameters such as temperature and pressure directly or to detect bio-chemicals with extremely high sensitivities by incorporating a chemisorption layer or bio-probe molecules. Furthermore, it also shows that surface acoustic wave devices can be integrated with a FBAR sensor array on the same piezoelectric substrate as the microfluidics systems to perform transportation and mixing of biosamples etc. demonstrating the possibility to fabricate integrated lab-on-a-chip detection systems, in which all the actuators and sensors are operated by acoustic wave devices. This makes the detection system simple, low cost and easy to operate and hence has great commercial potential. © 2011 Inderscience Enterprises Ltd.