991 resultados para Muñoz, Francesc
Resumo:
Amyloid β-peptide (Aβ) fibril deposition on cerebral vessels produces cerebral amyloid angiopathy that appears in the majority of Alzheimer's disease patients. An early onset of a cerebral amyloid angiopathy variant called hereditary cerebral hemorrhage with amyloidosis of the Dutch type is caused by a point mutation in Aβ yielding AβGlu22→Gln. The present study addresses the effect of amyloid fibrils from both wild-type and mutated Aβ on vascular cells, as well as the putative protective role of antioxidants on amyloid angiopathy. For this purpose, we studied the cytotoxicity induced by Aβ1–40 Glu22→Gln and Aβ1–40 wild-type fibrils on human venule endothelial cells and rat aorta smooth muscle cells. We observed that AβGlu22→Gln fibrils are more toxic for vascular cells than the wild-type fibrils. We also evaluated the cytotoxicity of Aβ fibrils bound with acetylcholinesterase (AChE), a common component of amyloid deposits. Aβ1–40 wild-type–AChE fibrillar complexes, similar to neuronal cells, resulted in an increased toxicity on vascular cells. Previous reports showing that antioxidants are able to reduce the toxicity of Aβ fibrils on neuronal cells prompted us to test the effect of vitamin E, vitamin C, and 17β-estradiol on vascular damage induced by Aβwild-type and AβGlu22→Gln. Our data indicate that vitamin E attenuated significantly the Aβ-mediated cytotoxicity on vascular cells, although 17β-estradiol and vitamin C failed to inhibit the cytotoxicity induced by Aβ fibrils.
Resumo:
The human olfactory receptor repertoire is reduced in comparison to other mammalsand to other non-human primates. Nonetheless, this olfactory decline opens an opportunity forevolutionary innovation and improvement. In the present study, we focus on an olfactoryreceptor gene, OR5I1, which had previously been shown to present an excess of amino acidreplacement substitutions between humans and chimpanzees. We analyze the geneticvariation in OR5I1 in a large worldwide human panel and find an excess of derived allelessegregating at relatively high frequencies in all populations. Additional evidence for selectionincludes departures from neutrality in allele frequency spectra tests but no unusually extendedhaplotype structure. Moreover, molecular structural inference suggests that one of thenonsynonymous polymorphisms defining the presumably adaptive protein form of OR5I1may alter the functional binding properties of the olfactory receptor. These results arecompatible with positive selection having modeled the pattern of variation found in the OR5I1gene and with a relatively ancient, mild selective sweep predating the “Out of Africa”expansion of modern humans.
Resumo:
Brain acetylcholinesterase (AChE) forms stable complexes with amyloid-beta peptide (Abeta) during its assembly into filaments, in agreement with its colocalization with the Abeta deposits of Alzheimer's brain. The association of the enzyme with nascent Abeta aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the Abeta aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of Abeta fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
Resumo:
A series of new benzolactam derivatives was synthesized and the derivatives were evaluated for theiraffinities at the dopamine D1, D2, and D3 receptors. Some of these compounds showed high D2 and/orD3 affinity and selectivity over the D1 receptor. The SAR study of these compounds revealed structuralcharacteristics that decisively influenced their D2 and D3 affinities. Structural models of the complexesbetween some of the most representative compounds of this series and the D2 and D3 receptors wereobtained with the aim of rationalizing the observed experimental results. Moreover, selected compoundsshowed moderate binding affinity on 5-HT2A which could contribute to reducing the occurrence of extrapyramidalside effects as potential antipsychotics.
Resumo:
Schizophrenia is a devastating mental disorder that has a largeimpact on the quality of life for those who are afflicted and isvery costly for families and society.[1] Although the etiology ofschizophrenia is still unknown and no cure has yet beenfound, it is treatable, and pharmacological therapy often producessatisfactory results. Among the various antipsychoticdrugs in use, clozapine is widely recognized as one ofthemost clinically effective agents, even if it elicits significant sideeffects such as metabolic disorders and agranulocytosis. Clozapineand the closely related compound olanzapine are goodexamples ofdrug s with a complex multi-receptor profile ;[2]they have affinities toward serotonin, dopamine, a adrenergic,muscarinic, and histamine receptors, among others.
Resumo:
We report here the legislative issues related toembryo research and human embryonic stem cell (hESC)research in Spain and the derivation of nine hESC lines atthe Center of Regenerative Medicine in Barcelona. You canfind the information for obtaining our lines for researchpurposes at blc@cmrb.eu.
Resumo:
Background: We present the results of EGASP, a community experiment to assess the state-ofthe-art in genome annotation within the ENCODE regions, which span 1% of the human genomesequence. The experiment had two major goals: the assessment of the accuracy of computationalmethods to predict protein coding genes; and the overall assessment of the completeness of thecurrent human genome annotations as represented in the ENCODE regions. For thecomputational prediction assessment, eighteen groups contributed gene predictions. Weevaluated these submissions against each other based on a ‘reference set’ of annotationsgenerated as part of the GENCODE project. These annotations were not available to theprediction groups prior to the submission deadline, so that their predictions were blind and anexternal advisory committee could perform a fair assessment.Results: The best methods had at least one gene transcript correctly predicted for close to 70%of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into accountalternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotidelevel, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programsrelying on mRNA and protein sequences were the most accurate in reproducing the manuallycurated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could beverified.Conclusions: This is the first such experiment in human DNA, and we have followed thestandards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe theresults presented here contribute to the value of ongoing large-scale annotation projects and shouldguide further experimental methods when being scaled up to the entire human genome sequence.
Resumo:
Studies of large sets of SNP data have proven to be a powerful tool in the analysis of the genetic structure of human populations. In this work, we analyze genotyping data for 2,841 SNPs in 12 Sub-Saharan African populations, including a previously unsampled region of south-eastern Africa (Mozambique). We show that robust results in a world-wide perspective can be obtained when analyzing only 1,000 SNPs. Our main results both confirm the results of previous studies, and show new and interesting features in Sub-Saharan African genetic complexity. There is a strong differentiation of Nilo-Saharans, much beyond what would be expected by geography. Hunter-gatherer populations (Khoisan and Pygmies) show a clear distinctiveness with very intrinsic Pygmy (and not only Khoisan) genetic features. Populations of the West Africa present an unexpected similarity among them, possibly the result of a population expansion. Finally, we find a strong differentiation of the south-eastern Bantu population from Mozambique, which suggests an assimilation of a pre-Bantu substrate by Bantu speakers in the region.
Resumo:
Mesoamerica, defined as the broad linguistic and cultural area from middle southern Mexico to Costa Rica, might have played a pivotal role during the colonization of theAmerican continent. It has been suggested that the Mesoamerican isthmus could have played an important role in severely restricting prehistorically gene flow between North and SouthAmerica. Although the Native American component has been already described in admixedMexican populations, few studies have been carried out in native Mexican populations. In thisstudy we present mitochondrial DNA (mtDNA) sequence data for the first hypervariable region (HVR-I) in 477 unrelated individuals belonging to eleven different native populations from Mexico. Almost all the Native Mexican mtDNAs could be classified into the four pan-Amerindian haplogroups (A2, B2, C1 and D1); only three of them could be allocated to the rare Native American lineage D4h3. Their haplogroup phylogenies are clearly star-like, as expected from relatively young populations that have experienced diverse episodes of genetic drift (e.g. extensive isolation, genetic drift and founder effects) and posterior population expansions. In agreement with this observation is the fact that Native Mexican populations show a high degree of heterogeneity in their patterns of haplogroup frequencies. HaplogroupX2a was absent in our samples, supporting previous observations where this clade was only detected in the American northernmost areas. The search for identical sequences in the American continent shows that, although Native Mexican populations seem to show a closer relationship to North American populations, they cannot be related to a single geographical region within the continent. Finally, we did not find significant population structure on the maternal lineages when considering the four main and distinct linguistic groups represented in our Mexican samples (Oto-Manguean, Uto-Aztecan, Tarascan, and Mayan), suggesting that genetic divergence predates linguistic diversification in Mexico.
Resumo:
BACKGROUND: CODIS-STRs in Native Mexican groups have rarely been analysed for human identification and anthropological purposes. AIM:To analyse the genetic relationships and population structure among three Native Mexican groups from Mesoamerica.SUBJECTS AND METHODS: 531 unrelated Native individuals from Mexico were PCR-typed for 15 and 9 autosomal STRs (Identifiler™ and Profiler™ kits, respectively), including five population samples: Purépechas (Mountain, Valley and Lake), Triquis and Yucatec Mayas. Previously published STR data were included in the analyses. RESULTS:Allele frequencies and statistical parameters of forensic importance were estimated by population. The majority of Native groups were not differentiated pairwise, excepting Triquis and Purépechas, which was attributable to their relative geographic and cultural isolation. Although Mayas, Triquis and Purépechas-Mountain presented the highest number of private alleles, suggesting recurrent gene flow, the elevated differentiation of Triquis indicates a different origin of this gene flow. Interestingly, Huastecos and Mayas were not differentiated, which is in agreement with the archaeological hypothesis that Huastecos represent an ancestral Maya group. Interpopulation variability was greater in Natives than in Mestizos, both significant.CONCLUSION: Although results suggest that European admixture has increased the similarity between Native Mexican groups, the differentiation and inconsistent clustering by language or geography stresses the importance of serial founder effect and/or genetic drift in showing their present genetic relationships.
Resumo:
Background: It is well known that the pattern of linkage disequilibrium varies between human populations, with remarkable geographical stratification. Indirect association studies routinely exploit linkage disequilibrium around genes, particularly in isolated populations where it is assumed to be higher. Here, we explore both the amount and the decay of linkage disequilibrium with physical distance along 211 gene regions, most of them related to complex diseases, across 39 HGDP-CEPH population samples, focusing particularly on the populations defined as isolates. Within each gene region and population we use r2 between all possible single nucleotide polymorphism (SNP) pairs as a measure of linkage disequilibrium and focus on the proportion of SNP pairs with r2 greater than 0.8.Results: Although the average r2 was found to be significantly different both between and within continental regions, a much higher proportion of r2 variance could be attributed to differences between continental regions (2.8% vs. 0.5%, respectively). Similarly, while the proportion of SNP pairs with r2 > 0.8 was significantly different across continents for all distance classes, it was generally much more homogenous within continents, except in the case of Africa and the Americas. The only isolated populations with consistently higher LD in all distance classes with respect to their continent are the Kalash (Central South Asia) and the Surui (America). Moreover, isolated populations showed only slightly higher proportions of SNP pairs with r2 > 0.8 per gene region than non-isolated populations in the same continent. Thus, the number of SNPs in isolated populations that need to be genotyped may be only slightly less than in non-isolates. Conclusion: The "isolated population" label by itself does not guarantee a greater genotyping efficiency in association studies, and properties other than increased linkage disequilibrium may make these populations interesting in genetic epidemiology.
Resumo:
Background: Before the arrival of Europeans to Cuba, the island was inhabited by two Native American groups, the Tainos and the Ciboneys. Most of the present archaeological, linguistic and ancient DNA evidence indicates a South American origin for these populations. In colonial times, Cuban Native American people were replaced by European settlers and slaves from Africa. It is still unknown however, to what extent their genetic pool intermingled with and was 'diluted' by the arrival of newcomers. In order to investigate the demographic processes that gave rise to the current Cuban population, we analyzed the hypervariable region I (HVS-I) and five single nucleotide polymorphisms (SNPs) in the mitochondrial DNA (mtDNA) coding region in 245 individuals, and 40 Y-chromosome SNPs in 132 male individuals. Results: The Native American contribution to present-day Cubans accounted for 33% of the maternal lineages, whereas Africa and Eurasia contributed 45% and 22% of the lineages, respectively. This Native American substrate in Cuba cannot be traced back to a single origin within the American continent, as previously suggested by ancient DNA analyses. Strikingly, no Native American lineages were found for the Y-chromosome, for which the Eurasian and African contributions were around 80% and 20%, respectively. Conclusion: While the ancestral Native American substrate is still appreciable in the maternal lineages, the extensive process of population admixture in Cuba has left no trace of the paternal Native American lineages, mirroring the strong sexual bias in the admixture processes taking place during colonial times.
Resumo:
The complex etiology of schizophrenia has prompted researchers to develop clozapine-related multitargetstrategies to combat its symptoms. Here we describe a series of new 6-aminomethylbenzofuranones in aneffort to find new chemical structures with balanced affinities for 5-HT2 and dopamine receptors. Throughbiological and computational studies of 5-HT2A and D2 receptors, we identified the receptor serine residuesS3.36 and S5.46 as the molecular keys to explaining the differences in affinity and selectivity betweenthese new compounds for this group of receptors. Specifically, the ability of these compounds to establishone or two H-bonds with these key residues appears to explain their difference in affinity. In addition, wedescribe compound 2 (QF1004B) as a tool to elucidate the role of 5-HT2C receptors in mediating antipsychoticeffects and metabolic adverse events. The compound 16a (QF1018B) showed moderate to high affinitiesfor D2 and 5-HT2A receptors, and a 5-HT2A/D2 ratio was predictive of an atypical antipsychotic profile.
Resumo:
Background: We address the problem of studying recombinational variations in (human) populations. In this paper, our focus is on one computational aspect of the general task: Given two networks G1 and G2, with both mutation and recombination events, defined on overlapping sets of extant units the objective is to compute a consensus network G3 with minimum number of additional recombinations. We describe a polynomial time algorithm with a guarantee that the number of computed new recombination events is within ϵ = sz(G1, G2) (function sz is a well-behaved function of the sizes and topologies of G1 and G2) of the optimal number of recombinations. To date, this is the best known result for a network consensus problem.Results: Although the network consensus problem can be applied to a variety of domains, here we focus on structure of human populations. With our preliminary analysis on a segment of the human Chromosome X data we are able to infer ancient recombinations, population-specific recombinations and more, which also support the widely accepted 'Out of Africa' model. These results have been verified independently using traditional manual procedures. To the best of our knowledge, this is the first recombinations-based characterization of human populations. Conclusion: We show that our mathematical model identifies recombination spots in the individual haplotypes; the aggregate of these spots over a set of haplotypes defines a recombinational landscape that has enough signal to detect continental as well as population divide based on a short segment of Chromosome X. In particular, we are able to infer ancient recombinations, population-specific recombinations and more, which also support the widely accepted 'Out of Africa' model. The agreement with mutation-based analysis can be viewed as an indirect validation of our results and the model. Since the model in principle gives us more information embedded in the networks, in our future work, we plan to investigate more non-traditional questions via these structures computed by our methodology.
Resumo:
Background: The human FOXI1 gene codes for a transcription factor involved in the physiology of the inner ear, testis, and kidney. Using three interspecies comparisons, it has been suggested that this may be a gene underhuman-specific selection. We sought to confirm this finding by using an extended set of orthologous sequences.Additionally, we explored for signals of natural selection within humans by sequencing the gene in 20 Europeans,20 East Asians and 20 Yorubas and by analysing SNP variation in a 2 Mb region centered on FOXI1 in 39worldwide human populations from the HGDP-CEPH diversity panel.Results: The genome sequences recently available from other primate and non-primate species showed that FOXI1divergence patterns are compatible with neutral evolution. Sequence-based neutrality tests were not significant inEuropeans, East Asians or Yorubas. However, the Long Range Haplotype (LRH) test, as well as the iHS and XP-Rsbstatistics revealed significantly extended tracks of homozygosity around FOXI1 in Africa, suggesting a recentepisode of positive selection acting on this gene. A functionally relevant SNP, as well as several SNPs either on theputatively selected core haplotypes or with significant iHS or XP-Rsb values, displayed allele frequencies stronglycorrelated with the absolute geographical latitude of the populations sampled.Conclusions: We present evidence for recent positive selection in the FOXI1 gene region in Africa. Climate mightbe related to this recent adaptive event in humans. Of the multiple functions of FOXI1, its role in kidney-mediatedwater-electrolyte homeostasis is the most obvious candidate for explaining a climate-related adaptation.