974 resultados para Movable bed models (Hydraulic engineering)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational models in physiology often integrate functional and structural information from a large range of spatio-temporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and scepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace and refine animal experiments. A fundamental requirement to fulfil these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations between experiments, models and simulations in cardiac electrophysiology. We describe the processes, data and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. Validation must therefore take into account the complex interplay between models, simulations and experiments. Key points for developing strategies for validation are: 1) understanding sources of bio-variability is crucial to the comparison between simulation and experimental results; 2) robustness of techniques and tools is a pre-requisite to conducting physiological investigations using the MSE system; 3) definition and adoption of standards facilitates interoperability of experiments, models and simulations; 4) physiological validation must be understood as an iterative process that defines the specific aspects of electrophysiology the MSE system targets, and is driven by advancements in experimental and computational methods and the combination of both.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing crowd counting algorithms rely on holistic, local or histogram based features to capture crowd properties. Regression is then employed to estimate the crowd size. Insufficient testing across multiple datasets has made it difficult to compare and contrast different methodologies. This paper presents an evaluation across multiple datasets to compare holistic, local and histogram based methods, and to compare various image features and regression models. A K-fold cross validation protocol is followed to evaluate the performance across five public datasets: UCSD, PETS 2009, Fudan, Mall and Grand Central datasets. Image features are categorised into five types: size, shape, edges, keypoints and textures. The regression models evaluated are: Gaussian process regression (GPR), linear regression, K nearest neighbours (KNN) and neural networks (NN). The results demonstrate that local features outperform equivalent holistic and histogram based features; optimal performance is observed using all image features except for textures; and that GPR outperforms linear, KNN and NN regression

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centres around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background With dwindling malaria cases in Bhutan in recent years, the government of Bhutan has made plans for malaria elimination by 2016. This study aimed to determine coverage, use and ownership of LLINs, as well as the prevalence of asymptomatic malaria at a single time-point, in four sub-districts of Bhutan. Methods A cross-sectional study was carried out in August 2013. Structured questionnaires were administered to a single respondent in each household (HH) in four sub-districts. Four members from 25 HH, randomly selected from each sub-district, were tested using rapid diagnostic tests (RDT) for asymptomatic Plasmodium falciparum and Plasmodium vivax infection. Multivariable logistic regression models were used to identify factors associated with LLIN use and maintenance. Results All blood samples from 380 participants tested negative for Plasmodium infections. A total of 1,223 HH (92.5% of total HH) were surveyed for LLIN coverage and use. Coverage of LLINs was 99.0% (1,203/1,223 HH). Factors associated with decreased odds of sleeping under a LLIN included: washing LLINs nine months compared to washing LLINs every six months; HH in the least poor compared to the most poor socio-economic quintile; a HH income of Nu 5,001-10,000 (US$1 = Nu 59.55), and Nu >10,000, compared to HH with income of

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building information models have created a paradigm shift in how buildings are built and managed by providing a dynamic repository for building data that is useful in many new operational scenarios. This change has also created an opportunity to use building information models as an integral part of security operations and especially as a tool to facilitate fine-grained access control to building spaces in smart buildings and critical infrastructure environments. In this paper, we identify the requirements for a security policy model for such an access control system and discuss why the existing policy models are not suitable for this application. We propose a new policy language extension to XACML, with BIM specific data types and functions based on the IFC specification, which we call BIM-XACML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building information models are increasingly being utilised for facility management of large facilities such as critical infrastructures. In such environments, it is valuable to utilise the vast amount of data contained within the building information models to improve access control administration. The use of building information models in access control scenarios can provide 3D visualisation of buildings as well as many other advantages such as automation of essential tasks including path finding, consistency detection, and accessibility verification. However, there is no mathematical model for building information models that can be used to describe and compute these functions. In this paper, we show how graph theory can be utilised as a representation language of building information models and the proposed security related functions. This graph-theoretic representation allows for mathematically representing building information models and performing computations using these functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conceptual modelling continues to be an important means for graphically capturing the requirements of an information system. Observations of modelling practice suggest that modellers often use multiple conceptual models in combination, because they articulate different aspects of real-world domains. Yet, the available empirical as well as theoretical research in this area has largely studied the use of single models, or single modelling grammars. We develop a Theory of Combined Ontological Coverage by extending an existing theory of ontological expressiveness of conceptual modelling grammars. Our new theory posits that multiple conceptual models are used to increase the maximum coverage of the real-world domain being modelled, whilst trying to minimize the ontological overlap between the models. We illustrate how the theory can be applied to analyse sets of conceptual models. We develop three propositions of the theory about evaluations of model combinations in terms of users’ selection, understandability and usefulness of conceptual models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.