916 resultados para Morphing Alteration Detection Image Warping
Resumo:
We introduce a new image-based visual navigation algorithm that allows the Cartesian velocity of a robot to be defined with respect to a set of visually observed features corresponding to previously unseen and unmapped world points. The technique is well suited to mobile robot tasks such as moving along a road or flying over the ground. We describe the algorithm in general form and present detailed simulation results for an aerial robot scenario using a spherical camera and a wide angle perspective camera, and present experimental results for a mobile ground robot.
Resumo:
Health care interventions in the area of body image disturbance and eating disorders largely involve individual treatment approaches, while prevention and health promotion are relatively underexplored. A review of health promotion activities in the area of body image in Australia revealed three programmes, the most extensive and longest standing having been established in 1992. The aims of this programme are to reduce body image dissatisfaction and inappropriate eating behaviour, especially among women. Because health promotion is concerned with the social aspects of health, it was hypothesized by the authors that a social understanding of body image and eating disorders might be advanced in a health promotion setting and reflected in the approach to practice. In order to examine approaches to body image in health promotion, 10 health professionals responsible for the design and management of this programme participated in a series of semi-structured interviews between 1997 and 2000. Three discursive themes were evident in health workers' explanations of body image problems: (1) cognitive-behavioural themes; (2) gender themes; and (3) socio-cultural themes. While body image problems were constructed as psychological problems that are particularly experienced by women, their origins were largely conceived to be socio-cultural. The implications of these constructions are critically discussed in terms of the approach to health promotion used in this programme.
Resumo:
Monitoring fetal wellbeing is a compelling problem in modern obstetrics. Clinicians have become increasingly aware of the link between fetal activity (movement), well-being, and later developmental outcome. We have recently developed an ambulatory accelerometer-based fetal activity monitor (AFAM) to record 24-hour fetal movement. Using this system, we aim at developing signal processing methods to automatically detect and quantitatively characterize fetal movements. The first step in this direction is to test the performance of the accelerometer in detecting fetal movement against real-time ultrasound imaging (taken as the gold standard). This paper reports first results of this performance analysis.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
This report describes the available functionality and use of the ClusterEval evaluation software. It implements novel and standard measures for the evaluation of cluster quality. This software has been used at the INEX XML Mining track and in the MediaEval Social Event Detection task.
Resumo:
Here we report an ultrasensitive method for detecting bio-active compounds in biological samples by means of functionalised nanoparticles interrogated by surface enhanced Raman spectroscopy (SERS). This method is applicable to the recovery and detection of many diagnostically important peptidyl analytes such as insulin, human growth hormone, growth factors (IGFs) and erythropoietin (EPO), as well as many small molecule analytes and metabolites. Our method, developed to detect EPO, demonstrates its utility in a complex yet well defined biological system. Recombinant human EPO (rhEPO) and EPO analogues have successfully been used to treat anaemia in end-stage renal failure, chronic disorders and infections, cancer and AIDS. Current methods for EPO testing are lengthy, laborious and relatively insensitive to low concentrations. In our rapid screening methodology, gold nanoparticles were functionalised with anti-EPO antibodies to provide very high selectivity towards the EPO protein in urine. These “smart sensor” nanoparticles interact with and trap EPO. Subsequent SERS screening allows for the detection and quantisation of ultra trace amounts (<<10-15 M) of EPO in urine samples with minimal sample preparation. We present data showing that the SERS spectrum differentiates between human endogenous EPO and rhEPO in unpurified urine, and potentially distinguishes between purified EPO isoforms. The elimination of sample preparation and direct screening in biological fluids significantly reduces the time required by current methods. Antibody recognition against a variety of biological targets and the availability of portable commercial SERS analysers for rapid onsite testing suggest broad diagnostic applicability in a flexible analytical platform.
Resumo:
Iris based identity verification is highly reliable but it can also be subject to attacks. Pupil dilation or constriction stimulated by the application of drugs are examples of sample presentation security attacks which can lead to higher false rejection rates. Suspects on a watch list can potentially circumvent the iris based system using such methods. This paper investigates a new approach using multiple parts of the iris (instances) and multiple iris samples in a sequential decision fusion framework that can yield robust performance. Results are presented and compared with the standard full iris based approach for a number of iris degradations. An advantage of the proposed fusion scheme is that the trade-off between detection errors can be controlled by setting parameters such as the number of instances and the number of samples used in the system. The system can then be operated to match security threat levels. It is shown that for optimal values of these parameters, the fused system also has a lower total error rate.
Resumo:
The rapid growth of visual information on Web has led to immense interest in multimedia information retrieval (MIR). While advancement in MIR systems has achieved some success in specific domains, particularly the content-based approaches, general Web users still struggle to find the images they want. Despite the success in content-based object recognition or concept extraction, the major problem in current Web image searching remains in the querying process. Since most online users only express their needs in semantic terms or objects, systems that utilize visual features (e.g., color or texture) to search images create a semantic gap which hinders general users from fully expressing their needs. In addition, query-by-example (QBE) retrieval imposes extra obstacles for exploratory search because users may not always have the representative image at hand or in mind when starting a search (i.e. the page zero problem). As a result, the majority of current online image search engines (e.g., Google, Yahoo, and Flickr) still primarily use textual queries to search. The problem with query-based retrieval systems is that they only capture users’ information need in terms of formal queries;; the implicit and abstract parts of users’ information needs are inevitably overlooked. Hence, users often struggle to formulate queries that best represent their needs, and some compromises have to be made. Studies of Web search logs suggest that multimedia searches are more difficult than textual Web searches, and Web image searching is the most difficult compared to video or audio searches. Hence, online users need to put in more effort when searching multimedia contents, especially for image searches. Most interactions in Web image searching occur during query reformulation. While log analysis provides intriguing views on how the majority of users search, their search needs or motivations are ultimately neglected. User studies on image searching have attempted to understand users’ search contexts in terms of users’ background (e.g., knowledge, profession, motivation for search and task types) and the search outcomes (e.g., use of retrieved images, search performance). However, these studies typically focused on particular domains with a selective group of professional users. General users’ Web image searching contexts and behaviors are little understood although they represent the majority of online image searching activities nowadays. We argue that only by understanding Web image users’ contexts can the current Web search engines further improve their usefulness and provide more efficient searches. In order to understand users’ search contexts, a user study was conducted based on university students’ Web image searching in News, Travel, and commercial Product domains. The three search domains were deliberately chosen to reflect image users’ interests in people, time, event, location, and objects. We investigated participants’ Web image searching behavior, with the focus on query reformulation and search strategies. Participants’ search contexts such as their search background, motivation for search, and search outcomes were gathered by questionnaires. The searching activity was recorded with participants’ think aloud data for analyzing significant search patterns. The relationships between participants’ search contexts and corresponding search strategies were discovered by Grounded Theory approach. Our key findings include the following aspects: - Effects of users' interactive intents on query reformulation patterns and search strategies - Effects of task domain on task specificity and task difficulty, as well as on some specific searching behaviors - Effects of searching experience on result expansion strategies A contextual image searching model was constructed based on these findings. The model helped us understand Web image searching from user perspective, and introduced a context-aware searching paradigm for current retrieval systems. A query recommendation tool was also developed to demonstrate how users’ query reformulation contexts can potentially contribute to more efficient searching.
Resumo:
The presence of insect pests in grain storages throughout the supply chain is a significant problem for farmers, grain handlers, and distributors world-wide. Insect monitoring and sampling programmes are used in the stored grains industry for the detection and estimation of pest populations. At the low pest densities dictated by economic and commercial requirements, the accuracy of both detection and abundance estimates can be influenced by variations in the spatial structure of pest populations over short distances. Geostatistical analysis of Rhyzopertha dominica populations in 2 and 3 dimensions showed that insect numbers were positively correlated over short (0.5 cm) distances, and negatively correlated over longer (.10 cm) distances. At 35 C, insects were located significantly further from the grain surface than at 25 and 30 C. Dispersion metrics showed statistically significant aggregation in all cases. The observed heterogeneous spatial distribution of R. dominica may also be influenced by factors such as the site of initial infestation and disturbance during handling. To account for these additional factors, I significantly extended a simulation model that incorporates both pest growth and movement through a typical stored-grain supply chain. By incorporating the effects of abundance, initial infestation site, grain handling, and treatment on pest spatial distribution, I developed a supply chain model incorporating estimates of pest spatial distribution. This was used to examine several scenarios representative of grain movement through a supply chain, and determine the influence of infestation location and grain disturbance on the sampling intensity required to detect pest infestations at various infestation rates. This study has investigated the effects of temperature, infestation point, and grain handling on the spatial distribution and detection of R. dominica. The proportion of grain infested was found to be dependent upon abundance, initial pest location, and grain handling. Simulation modelling indicated that accounting for these factors when developing sampling strategies for stored grain has the potential to significantly reduce sampling costs while simultaneously improving detection rate, resulting in reduced storage and pest management cost while improving grain quality.
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.
Resumo:
Examining the evolution of British and Australian policing, this comparative review of the literature considers the historical underpinnings of policing in these two countries and the impact of community legitimacy derived from the early concepts of policing by consent. Using the August 2011 disorder in Britain as a lens, this paper considers whether, in striving to maintain community confidence, undue emphasis is placed on the police's public image at the expense of community safety. Examining the path of policing reform, the impact of bureaucracy on policing and the evolving debate surrounding police performance, this review suggests that, while largely delivering on the ideal of an ethical and strong police force, a preoccupation with self-image may in fact result in tarnishing the very thing British and Australian police forces strive to achieve – their standing with the public. This paper advocates for a more realistic goal of gaining public respect rather than affection in order to achieve the difficult balance between maintaining trust and respect as an approachable, ethical entity providing firm, confident policing in this ever-evolving, modern society.
Resumo:
Globalised communication in society today is characterised by multimodal forms of meaning making in a context of increased cultural and linguistic diversity, calling for the teaching of multiliteracies. This transformation requires the development of a new metalanguage or language of description for the burgeoning and hybridised variety of text forms associated with information and multimedia technologies. To continue to teach to a narrow band of print-based genres, grammars, and skills is to ignore the reality of textual practices outside of schools. This paper draws from classroom research in a multiliteracies classroom to provide a multimodal analysis of a claymation movie. The significance of the paper is the synthesis of a multimodal metalanguage for teachers and students to describe the features of work in the kineikonic (moving image) mode.
Resumo:
This paper presents two algorithms to automate the detection of marine species in aerial imagery. An algorithm from an initial pilot study is presented in which morphology operations and colour analysis formed the basis of its working principle. A second approach is presented in which saturation channel and histogram-based shape profiling were used. We report on performance for both algorithms using datasets collected from an unmanned aerial system at an altitude of 1000 ft. Early results have demonstrated recall values of 48.57% and 51.4%, and precision values of 4.01% and 4.97%.
Resumo:
Monitoring and estimation of marine populations is of paramount importance for the conservation and management of sea species. Regular surveys are used to this purpose followed often by a manual counting process. This paper proposes an algorithm for automatic detection of dugongs from imagery taken in aerial surveys. Our algorithm exploits the fact that dugongs are rare in most images, therefore we determine regions of interest partially based on color rarity. This simple observation makes the system robust to changes in illumination. We also show that by applying the extended-maxima transform on red-ratio images, submerged dugongs with very fuzzy edges can be detected. Performance figures obtained here are promising in terms of degree of confidence in the detection of marine species, but more importantly our approach represents a significant step in automating this type of surveys.
Resumo:
This thesis examines the characteristics of anthropometry and body composition in Indonesian adults and some of the risk factors including body image, eating behaviours, and physical activity. Examination on body image, eating behaviours, and physical activity demonstrates significant correlations with anthropometry and body composition in Indonesian adults. The study also identified body image distortion in some of the participants and provides suggestions for intervention development addressed to the groups of participants which have been identified as having a distorted body image.