999 resultados para Modelagem qualitativa
Resumo:
This work consists basically in the elaboration of an Artificial Neural Network (ANN) in order to model the composites materials’ behavior when submitted to fatigue loadings. The proposal is to develop and present a mixed model, which associate an analytical equation (Adam Equation) to the structure of the ANN. Given that the composites often shows a similar behavior when subject to float loadings, this equation aims to establish a pre-defined comparison pattern for a generic material, so that the ANN fit the behavior of another composite material to that pattern. In this way, the ANN did not need to fully learn the behavior of a determined material, because the Adam Equation would do the big part of the job. This model was used in two different network architectures, modular and perceptron, with the aim of analyze it efficiency in distinct structures. Beyond the different architectures, it was analyzed the answers generated from two sets of different data – with three and two SN curves. This model was also compared to the specialized literature results, which use a conventional structure of ANN. The results consist in analyze and compare some characteristics like generalization capacity, robustness and the Goodman Diagrams, developed by the networks.
Resumo:
The objective of this study was to evaluate the effects of the use of cashew bagasse bran (CBB) as food ingredient in qualitative feed restriction programs on the carcass traits, meat quality, organs weight and intestinal morphometry of barrows and gilts. Twenty – four crossbred pigs were used (12 barrows and 12 gilts) with an average initial body weight of 57.93 ± 3.67 kg/LW. The experimental designs was in randomized blocks 3x2 factorial arrangement with three level (0%, 15% e 30% CBB), two genders (barrows and gilts) and four repetition. A total of twenty-four instalments. The treatments were composed of basal diet (BD) formulated with corn, soybean meal and commercial base mix for finishing pigs, being containing different levels of CBB. At the end of the trial period the animals were slaughtered for the evaluation of the meat quality, traits carcass, Absolute Weight (AW) and Relative Weight (RW) of the organs and morphometric study of small intestine fragment. The inclusion of (CBB) in the diets did not affect the traits carcass of gilts, but interfered in the traits carcass of the barrow positively, increasing the yield of meat into cold carcass and reducing the thickness of subcutaneous fat, without affecting the fatty acid profile. However, we observed increased weight of organs and partial volume of absortiva mucosa of gilts. In the comparison between sex was observed a greater liver weight (AW) and (RW), and surface density of absortiva mucosa of barrow. The use of CBB was considered as ingredient to be used in programs of qualitative feed restriction for finishing pigs.
Resumo:
The objective of this study was to evaluate the effects of the use of cashew bagasse bran (CBB) as food ingredient in qualitative feed restriction programs on the carcass traits, meat quality, organs weight and intestinal morphometry of barrows and gilts. Twenty – four crossbred pigs were used (12 barrows and 12 gilts) with an average initial body weight of 57.93 ± 3.67 kg/LW. The experimental designs was in randomized blocks 3x2 factorial arrangement with three level (0%, 15% e 30% CBB), two genders (barrows and gilts) and four repetition. A total of twenty-four instalments. The treatments were composed of basal diet (BD) formulated with corn, soybean meal and commercial base mix for finishing pigs, being containing different levels of CBB. At the end of the trial period the animals were slaughtered for the evaluation of the meat quality, traits carcass, Absolute Weight (AW) and Relative Weight (RW) of the organs and morphometric study of small intestine fragment. The inclusion of (CBB) in the diets did not affect the traits carcass of gilts, but interfered in the traits carcass of the barrow positively, increasing the yield of meat into cold carcass and reducing the thickness of subcutaneous fat, without affecting the fatty acid profile. However, we observed increased weight of organs and partial volume of absortiva mucosa of gilts. In the comparison between sex was observed a greater liver weight (AW) and (RW), and surface density of absortiva mucosa of barrow. The use of CBB was considered as ingredient to be used in programs of qualitative feed restriction for finishing pigs.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.
Resumo:
In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.
Resumo:
Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.
Resumo:
Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.
Resumo:
Il presente lavoro di tesi ha avuto lo scopo di valutare l’effetto dell’insorgenza dell’anomalia di destrutturazione, contestuale o meno al manifestarsi dell’anomalia white-striping, su alcune caratteristiche qualitative delle carni. L’anomalia di destrutturazione ha determinato una consistente diminuzione del contenuto di proteine ed un aumento del tenore di umidità. Al contrario, l’aumento del livello di lipidi è associato alla presenza della sola anomalia white-striping, i cui effetti sulla composizione sembrano essere in generale più moderati. Tuttavia, nel complesso, le modificazioni sulla composizione sono più marcate nella parte superficiale, mentre in profondità le differenze sono di entità più limitate. I petti destrutturati sono inoltre dotati di valori di pH ultimo più elevati, soprattutto nella parte superficiale, e non si discostano da quelli osservati per l’anomalia white-striping. Il colore risulta scarsamente modificato, mentre l’analisi rilassometrica (LR-NMR) ha permesso di evidenziare che i petti destrutturati possiedono un’abbondante quantità di acqua extra-miofibrillare, che più facilmente può essere persa durante le fasi di conservazione e trasformazione delle carni. In analogia con quanto osservato per la composizione chimica, tale risultato è particolarmente accentuato nello strato superficiale, mentre nello strato profondo tali modificazioni riguardano solo i campioni affetti da entrambe le anomalie. Pertanto questo studio ha permesso di stabilire che le modificazioni avvengono principalmente nella porzione superficiale del muscolo P. major, dove verosimilmente i processi degenerativi prendono avvio per poi coinvolgere in una seconda fase anche la parte profonda. Inoltre, è stato dimostrato che la presenza di destrutturazione superficiale dei muscoli pettorali comporta complessivamente una modificazione più accentuata della composizione e della distribuzione dell’acqua rispetto alla sola presenza dell’anomalia white-striping.
Resumo:
Un sistema meccanico è descritto da equazioni differenziali spesso non lineari. Nel maggior numero dei casi tali equazioni non sono risolubili per via analitica e quindi si ricorre all'analisi qualitativa del moto che permette di ricavare informazioni su di esso senza integrare le equazioni. Nell’approccio qualitativo il metodo più utilizzato è la discussione alla Weierstrass che permette di ricavare informazioni sul moto di un punto materiale, che si muove di moto unidimensionale, soggetto a forze conservative, a partire dalla legge di conservazione dell'energia totale. Un altro metodo molto efficace è la costruzione del diagramma di fase, che nel caso di un punto materiale si riduce allo studio delle curve di livello dell’energia totale e permette di rappresentare lo stato del sistema in ogni istante di tempo. Infine altri due metodi analitici che si utilizzano nel caso di oscillazioni non lineari sono il metodo delle approssimazioni successive e delle perturbazioni. In questa tesi viene illustrato ampiamente il primo metodo e si danno alcuni cenni degli altri due, corredandoli con esempi.
Resumo:
Human development requires a broad balance between ecological, social and economic factors in order to ensure its own sustainability. In this sense, the search for new sources of energy generation, with low deployment and operation costs, which cause the least possible impact to the environment, has been the focus of attention of all society segments. To do so, the reduction in exploration of fossil fuels and the encouragement of using renewable energy resources for distributed generation have proved interesting alternatives to the expansion of the energy matrix of various countries in the world. In this sense, the wind energy has acquired an increasingly significant role, presenting increasing rates of power grid penetration and highlighting technological innovations such as the use of permanent magnet synchronous generators (PMSG). In Brazil, this fact has also been noted and, as a result, the impact of the inclusion of this source in the distribution and sub-transmission power grid has been a major concern of utilities and agents connected to Brazilian electrical sector. Thus, it is relevant the development of appropriate computational tools that allow detailed predictive studies about the dynamic behavior of wind farms, either operating with isolated load, either connected to the main grid, taking also into account the implementation of control strategies for active/reactive power generation and the keeping of adequate levels of voltage and frequency. This work fits in this context since it comprises mathematical and computational developments of a complete wind energy conversion system (WECS) endowed with PMSG using time domain techniques of Alternative Transients Program (ATP), which prides itself a recognized reputation by scientific and academic communities as well as by electricity professionals in Brazil and elsewhere. The modeling procedures performed allowed the elaboration of blocks representing each of the elements of a real WECS, comprising the primary source (the wind), the wind turbine, the PMSG, the frequency converter, the step up transformer, the load composition and the power grid equivalent. Special attention is also given to the implementation of wind turbine control techniques, mainly the pitch control responsible for keeping the generator under the maximum power operation point, and the vector theory that aims at adjusting the active/reactive power flow between the wind turbine and the power grid. Several simulations are performed to investigate the dynamic behavior of the wind farm when subjected to different operating conditions and/or on the occurrence of wind intensity variations. The results have shown the effectiveness of both mathematical and computational modeling developed for the wind turbine and the associated controls.
Resumo:
In this study, our goal was develop and describe a molecular model of the enzyme-inhibiting interaction which can be used for an optimized projection of a Microscope Force Atomic nanobiosensor to detect pesticides molecules, used in agriculture, to evaluate its accordance with limit levels stipulated in valid legislation for its use. The studied herbicide (imazaquin) is a typical member of imidazolinone family and is an inhibitor of the enzymatic activity of Acetohydroxiacid Synthase (AHAS) enzyme that is responsible for the first step of pathway for the synthesis of side-chains in amino acids. The analysis of this enzyme property in the presence of its cofactors was made to obtain structural information and charge distribution of the molecular surface to evaluate its capacity of became immobilized on the Microscopy Atomic Force tip. The computational simulation of the system, using Molecular Dynamics, was possible with the force-field parameters for the cofactor and the herbicides obtained by the online tool SwissParam and it was implemented in force-field CHARMM27, used by software GROMACS; then appropriated simulations were made to validate the new parameters. The molecular orientation of the AHAS was defined based on electrostatic map and the availability of the herbicide in the active site. Steered Molecular Dynamics (SMD) Simulations, followed by quantum mechanics calculations for more representative frames, according to the sequential QM/MM methodology, in a specific direction of extraction of the herbicide from the active site. Therefore, external harmonic forces were applied with similar force constants of AFM cantilever for to simulate herbicide detection experiments by the proposed nanobiosensor. Force value of 1391 pN and binding energy of -14048.52 kJ mol-1 were calculated.
Resumo:
This paper makes a comparative study of two Soft Single Switched Quadratic Boost Converters (SSS1 and SSS2) focused on Maximum Power Point Tracking (MPPT) of a PV array using Perturb and Observe (P&O) algorithm. The proposed converters maintain the static gain characteristics and dynamics of the original converter with the advantage of considerably reducing the switching losses and Electromagnetic Interference (EMI). It is displayed the input voltage Quadratic Boost converter modeling; qualitative and quantitative analysis of soft switching converters, defining the operation principles, main waveforms, time intervals and the state variables in each operation steps, phase planes of resonant elements, static voltage gain expressions, analysis of voltage and current efforts in semiconductors and the operational curves at 200 W to 800 W. There are presented project of PI, PID and PID + Notch compensators for MPPT closed-loop system and resonant elements design. In order to analyze the operation of a complete photovoltaic system connected to the grid, it was chosen to simulate a three-phase inverter using the P-Q control theory of three-phase instantaneous power. Finally, the simulation results and experimental with the necessary comparative analysis of the proposed converters will be presented.