860 resultados para Model development guidelines
Resumo:
Major portion of hurricane-induced economic loss originates from damages to building structures. The damages on building structures are typically grouped into three main categories: exterior, interior, and contents damage. Although the latter two types of damages, in most cases, cause more than 50% of the total loss, little has been done to investigate the physical damage process and unveil the interdependence of interior damage parameters. Building interior and contents damages are mainly due to wind-driven rain (WDR) intrusion through building envelope defects, breaches, and other functional openings. The limitation of research works and subsequent knowledge gaps, are in most part due to the complexity of damage phenomena during hurricanes and lack of established measurement methodologies to quantify rainwater intrusion. This dissertation focuses on devising methodologies for large-scale experimental simulation of tropical cyclone WDR and measurements of rainwater intrusion to acquire benchmark test-based data for the development of hurricane-induced building interior and contents damage model. Target WDR parameters derived from tropical cyclone rainfall data were used to simulate the WDR characteristics at the Wall of Wind (WOW) facility. The proposed WDR simulation methodology presents detailed procedures for selection of type and number of nozzles formulated based on tropical cyclone WDR study. The simulated WDR was later used to experimentally investigate the mechanisms of rainwater deposition/intrusion in buildings. Test-based dataset of two rainwater intrusion parameters that quantify the distribution of direct impinging raindrops and surface runoff rainwater over building surface — rain admittance factor (RAF) and surface runoff coefficient (SRC), respectively —were developed using common shapes of low-rise buildings. The dataset was applied to a newly formulated WDR estimation model to predict the volume of rainwater ingress through envelope openings such as wall and roof deck breaches and window sill cracks. The validation of the new model using experimental data indicated reasonable estimation of rainwater ingress through envelope defects and breaches during tropical cyclones. The WDR estimation model and experimental dataset of WDR parameters developed in this dissertation work can be used to enhance the prediction capabilities of existing interior damage models such as the Florida Public Hurricane Loss Model (FPHLM).^
Resumo:
An awareness of mercury (Hg) contamination in various aquatic environments around the world has increased over the past decade, mostly due to its ability to concentrate in the biota. Because the presence and distribution of Hg in aquatic systems depend on many factors (e.g., pe, pH, salinity, temperature, organic and inorganic ligands, sorbents, etc.), it is crucial to understand its fate and transport in the presence of complexing constituents and natural sorbents, under those different factors. An improved understanding of the subject will support the selection of monitoring, remediation, and restoration technologies. The coupling of equilibrium chemical reactions with transport processes in the model PHREEQC offers an advantage in simulating and predicting the fate and transport of aqueous chemical species of interest. Thus, a great variety of reactive transport problems could be addressed in aquatic systems with boundary conditions of specific interest. Nevertheless, PHREEQC lacks a comprehensive thermodynamic database for Hg. Therefore, in order to use PHREEQC to address the fate and transport of Hg in aquatic environments, it is necessary to expand its thermodynamic database, confirm it and then evaluate it in applications where potential exists for its calibration and continued validation. The objectives of this study were twofold: 1) to develop, expand, and confirm the Hg database of the hydrogeochemical PHREEQC to enhance its capability to simulate the fate of Hg species in the presence of complexing constituents and natural sorbents under different conditions of pH, redox, salinity and temperature; and 2) to apply and evaluate the new database in flow and transport scenarios, at two field test beds: Oak Ridge Reservation, Oak Ridge, TN and Everglades National Park, FL, where Hg is present and is of much concern. Overall, this research enhanced the capability of the PHREEQC model to simulate the coupling of the Hg reactions in transport conditions. It also demonstrated its usefulness when applied to field situations.
Resumo:
Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^
Resumo:
Within the Stage II program evaluation of the Miami Youth Development Project's (YDP) Changing Lives Program (CLP), this study evaluated CLP intervention effectiveness in promoting positive change in emotion-focused identity exploration (i.e. feelings of personal expressiveness; PE) and a "negative" symptom of identity development (i.e. identity distress; ID) as a first step toward the investigation of a self-transformative model of identity development in adolescent youth. Using structural equation modeling techniques, this study found that participation in the CLP is associated with positive changes in PE (path = .841, p < .002), but not changes in ID. Increase in ID scores was found to be associated with increases in PE (path = .229, p < .002), as well. Intervention effects were not moderated by age/stage, gender, or ethnicity, though differences were found in the degree to which participating subgroups (African- American/Hispanic, male/female, 14-16 years old/17-19 years old) experience change in PE and ID. Findings also suggest that moderate levels of ID may not be deleterious to identity exploration and may be associated with active exploration.
Resumo:
In this thesis, the first-order radar cross section (RCS) of an iceberg is derived and simulated. This analysis takes place in the context of a monostatic high frequency surface wave radar with a vertical dipole source that is driven by a pulsed waveform. The starting point of this work is a general electric field equation derived previ- ously for an arbitrarily shaped iceberg region surrounded by an ocean surface. The condition of monostatic backscatter is applied to this general field equation and the resulting expression is inverse Fourier transformed. In the time domain the excitation current of the transmit antenna is specified to be a pulsed sinusoid signal. The result- ing electric field equation is simplified and its physical significance is assessed. The field equation is then further simplified by restricting the iceberg's size to fit within a single radar patch width. The power received by the radar is calculated using this electric field equation. Comparing the received power with the radar range equation gives a general expression for the iceberg RCS. The iceberg RCS equation is found to depend on several parameters including the geometry of the iceberg, the radar frequency, and the electrical parameters of both the iceberg and the ocean surface. The RCS is rewritten in a form suitable for simulations and simulations are carried out for rectangularly shaped icebergs. Simulation results are discussed and are found to be consistent with existing research.
Resumo:
Using survey data from 358 online customers, the study finds that the e-service quality construct conforms to the structure of a third-order factor model that links online service quality perceptions to distinct and actionable dimensions, including (1) website design, (2) fulfilment, (3) customer service, and (4) security/privacy. Each dimension is found to consist of several attributes that define the basis of e-service quality perceptions. A comprehensive specification of the construct, which includes attributes not covered in existing scales, is developed. The study contrasts a formative model consisting of 4 dimensions and 16 attributes against a reflective conceptualization. The results of this comparison indicate that studies using an incorrectly specified model overestimate the importance of certain e-service quality attributes. Global fit criteria are also found to support the detection of measurement misspecification. Meta-analytic data from 31,264 online customers are used to show that the developed measurement predicts customer behavior better than widely used scales, such as WebQual and E-S-Qual. The results show that the new measurement enables managers to assess e-service quality more accurately and predict customer behavior more reliably.
Resumo:
The semantic model developed in this research was in response to the difficulty a group of mathematics learners had with conventional mathematical language and their interpretation of mathematical constructs. In order to develop the model ideas from linguistics, psycholinguistics, cognitive psychology, formal languages and natural language processing were investigated. This investigation led to the identification of four main processes: the parsing process, syntactic processing, semantic processing and conceptual processing. The model showed the complex interdependency between these four processes and provided a theoretical framework in which the behaviour of the mathematics learner could be analysed. The model was then extended to include the use of technological artefacts into the learning process. To facilitate this aspect of the research, the theory of instrumentation was incorporated into the semantic model. The conclusion of this research was that although the cognitive processes were interdependent, they could develop at different rates until mastery of a topic was achieved. It also found that the introduction of a technological artefact into the learning environment introduced another layer of complexity, both in terms of the learning process and the underlying relationship between the four cognitive processes.
Resumo:
Communities of practice (CoPs) are among the professional development strategies most widely used in such fields as management and education. Though the approach has elicited keen interest, knowledge pertaining to its conceptual underpinnings is still limited, thus hindering proper assessment of CoPs' effects and the processes generating the latter. To address this shortcoming, this paper presents a conceptual model that was developed to evaluate an initiative based on a CoP strategy: Health Promotion Laboratories are a professional development intervention that was implemented in local public health organizations in Montreal (Quebec, Canada). The model is based on latest theories on work-group effectiveness and organizational learning and can be usefully adopted by evaluators who are increasingly called upon to illuminate decision-making about CoPs. Ultimately, validation of this conceptual model will help advance knowledge and practice pertaining to CoPs as well as professional and organizational development strategies in public health.
Resumo:
Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.
Resumo:
An investigation into karst hazard in southern Ontario has been undertaken with the intention of leading to the development of predictive karst models for this region. The reason these are not currently feasible is a lack of sufficient karst data, though this is not entirely due to the lack of karst features. Geophysical data was collected at Lake on the Mountain, Ontario as part of this karst investigation. This data was collected in order to validate the long-standing hypothesis that Lake on the Mountain was formed from a sinkhole collapse. Sub-bottom acoustic profiling data was collected in order to image the lake bottom sediments and bedrock. Vertical bedrock features interpreted as solutionally enlarged fractures were taken as evidence for karst processes on the lake bottom. Additionally, the bedrock topography shows a narrower and more elongated basin than was previously identified, and this also lies parallel to a mapped fault system in the area. This suggests that Lake on the Mountain was formed over a fault zone which also supports the sinkhole hypothesis as it would provide groundwater pathways for karst dissolution to occur. Previous sediment cores suggest that Lake on the Mountain would have formed at some point during the Wisconsinan glaciation with glacial meltwater and glacial loading as potential contributing factors to sinkhole development. A probabilistic karst model for the state of Kentucky, USA, has been generated using the Weights of Evidence method. This model is presented as an example of the predictive capabilities of these kind of data-driven modelling techniques and to show how such models could be applied to karst in Ontario. The model was able to classify 70% of the validation dataset correctly while minimizing false positive identifications. This is moderately successful and could stand to be improved. Finally, suggestions to improving the current karst model of southern Ontario are suggested with the goal of increasing investigation into karst in Ontario and streamlining the reporting system for sinkholes, caves, and other karst features so as to improve the current Ontario karst database.
Resumo:
Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of ∆n = 1-7 ×10-4 and ∆d < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.
Resumo:
This paper presents a vision that allows the combined use of model-driven engineering, run-time monitoring, and animation for the development and analysis of components in real-time embedded systems. Key building block in the tool environment supporting this vision is a highly-customizable code generation process. Customization is performed via a configuration specification which describes the ways in which input is provided to the component, the ways in which run-time execution information can be observed, and how these observations drive animation tools. The environment is envisioned to be suitable for different activities ranging from quality assurance to supporting certification, teaching, and outreach and will be built exclusively with open source tools to increase impact. A preliminary prototype implementation is described.