960 resultados para Misspecification, Sign restrictions, Shock identification, Model validation.
Resumo:
A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant’s Crack Band Model. To verify the accuracy of the approach, analyses ofcoupon specimens were performed, and the numerical predictions were compared with experimental data
Resumo:
BACKGROUND: There is a need for short, specific instruments that assess quality of life (QOL) adequately in the older adult population. The aims of the present study were to obtain evidence on the validity of the inferences that could be drawn from an instrument to measure QOL in the aging population (people 50+ years old), and to test its psychometric properties. METHODS: The instrument, WHOQOL-AGE, comprised 13 positive items, assessed on a five-point rating scale, and was administered to nationally representative samples (n = 9987) from Finland, Poland, and Spain. Cronbach's alpha was employed to assess internal consistency reliability, whereas the validity of the questionnaire was assessed by means of factor analysis, graded response model, Pearson's correlation coefficient and unpaired t-test. Normative values were calculated across countries and for different age groups. RESULTS: The satisfactory goodness-of-fit indices confirmed that the factorial structure of WHOQOL-AGE comprises two first-order factors. Cronbach's alpha was 0.88 for factor 1, and 0.84 for factor 2. Evidence supporting a global score was found with a second-order factor model, according to the goodness-of-fit indices: CFI = 0.93, TLI = 0.91, RMSEA = 0.073. Convergent validity was estimated at r = 0.75 and adequate discriminant validity was also found. Significant differences were found between healthy individuals (74.19 ± 13.21) and individuals with at least one chronic condition (64.29 ± 16.29), supporting adequate known-groups validity. CONCLUSIONS: WHOQOL-AGE has shown good psychometric properties in Finland, Poland, and Spain. Therefore, considerable support is provided to using the WHOQOL-AGE to measure QOL in older adults in these countries, and to compare the QOL of older and younger adults.
Resumo:
Brazil is one of the largest producers and consumers of charcoal in the world. About 50% of its charcoal comes from native forests, with a large part coming from unsustainable operations. The anatomic identification of charcoal is subjective; an instrumental technique would facilitate the monitoring of forests. This study aimed to verify the feasibility of using medium and near infrared reflectance spectroscopy to discriminate native (ipê) from plantation charcoals (eucalyptus). Principal Components Analysis, followed by Discriminant Factorial Analysis formed two different groups indicated by Mahalanobis distances of 40.6 and 80.3 for near and mid infrared, respectively. Validation of the model showed 100% efficacy.
Resumo:
Extinction coefficients (e) changes of manganese phthalocyanine (Mn-Pc) were studied in different organic solvents and related to solvent polarity scales; (Kosower's values (Z), Dimroth's values (E T), donor numbers (DN) and linear solvation energy relationships (LSER) or linear free energy relationships (LFER));, theoretical molecular orbital calculations and ligand/solvent coordination processes in order to predict molecular interaction with the medium and identification of predominant intermolecular forces.
Resumo:
Electricity distribution network operation (NO) models are challenged as they are expected to continue to undergo changes during the coming decades in the fairly developed and regulated Nordic electricity market. Network asset managers are to adapt to competitive technoeconomical business models regarding the operation of increasingly intelligent distribution networks. Factors driving the changes for new business models within network operation include: increased investments in distributed automation (DA), regulative frameworks for annual profit limits and quality through outage cost, increasing end-customer demands, climatic changes and increasing use of data system tools, such as Distribution Management System (DMS). The doctoral thesis addresses the questions a) whether there exist conditions and qualifications for competitive markets within electricity distribution network operation and b) if so, identification of limitations and required business mechanisms. This doctoral thesis aims to provide an analytical business framework, primarily for electric utilities, for evaluation and development purposes of dedicated network operation models to meet future market dynamics within network operation. In the thesis, the generic build-up of a business model has been addressed through the use of the strategicbusiness hierarchy levels of mission, vision and strategy for definition of the strategic direction of the business followed by the planning, management and process execution levels of enterprisestrategy execution. Research questions within electricity distribution network operation are addressed at the specified hierarchy levels. The results of the research represent interdisciplinary findings in the areas of electrical engineering and production economics. The main scientific contributions include further development of the extended transaction cost economics (TCE) for government decisions within electricity networks and validation of the usability of the methodology for the electricity distribution industry. Moreover, DMS benefit evaluations in the thesis based on the outage cost calculations propose theoretical maximum benefits of DMS applications equalling roughly 25% of the annual outage costs and 10% of the respective operative costs in the case electric utility. Hence, the annual measurable theoretical benefits from the use of DMS applications are considerable. The theoretical results in the thesis are generally validated by surveys and questionnaires.
Resumo:
Bakgrunden och inspirationen till föreliggande studie är tidigare forskning i tillämpningar på randidentifiering i metallindustrin. Effektiv randidentifiering möjliggör mindre säkerhetsmarginaler och längre serviceintervall för apparaturen i industriella högtemperaturprocesser, utan ökad risk för materielhaverier. I idealfallet vore en metod för randidentifiering baserad på uppföljning av någon indirekt variabel som kan mätas rutinmässigt eller till en ringa kostnad. En dylik variabel för smältugnar är temperaturen i olika positioner i väggen. Denna kan utnyttjas som insignal till en randidentifieringsmetod för att övervaka ugnens väggtjocklek. Vi ger en bakgrund och motivering till valet av den geometriskt endimensionella dynamiska modellen för randidentifiering, som diskuteras i arbetets senare del, framom en flerdimensionell geometrisk beskrivning. I de aktuella industriella tillämpningarna är dynamiken samt fördelarna med en enkel modellstruktur viktigare än exakt geometrisk beskrivning. Lösningsmetoder för den s.k. sidledes värmeledningsekvationen har många saker gemensamt med randidentifiering. Därför studerar vi egenskaper hos lösningarna till denna ekvation, inverkan av mätfel och något som brukar kallas förorening av mätbrus, regularisering och allmännare följder av icke-välställdheten hos sidledes värmeledningsekvationen. Vi studerar en uppsättning av tre olika metoder för randidentifiering, av vilka de två första är utvecklade från en strikt matematisk och den tredje från en mera tillämpad utgångspunkt. Metoderna har olika egenskaper med specifika fördelar och nackdelar. De rent matematiskt baserade metoderna karakteriseras av god noggrannhet och låg numerisk kostnad, dock till priset av låg flexibilitet i formuleringen av den modellbeskrivande partiella differentialekvationen. Den tredje, mera tillämpade, metoden kännetecknas av en sämre noggrannhet förorsakad av en högre grad av icke-välställdhet hos den mera flexibla modellen. För denna gjordes även en ansats till feluppskattning, som senare kunde observeras överensstämma med praktiska beräkningar med metoden. Studien kan anses vara en god startpunkt och matematisk bas för utveckling av industriella tillämpningar av randidentifiering, speciellt mot hantering av olinjära och diskontinuerliga materialegenskaper och plötsliga förändringar orsakade av “nedfallande” väggmaterial. Med de behandlade metoderna förefaller det möjligt att uppnå en robust, snabb och tillräckligt noggrann metod av begränsad komplexitet för randidentifiering.
Resumo:
The flow of information within modern information society has increased rapidly over the last decade. The major part of this information flow relies on the individual’s abilities to handle text or speech input. For the majority of us it presents no problems, but there are some individuals who would benefit from other means of conveying information, e.g. signed information flow. During the last decades the new results from various disciplines have all suggested towards the common background and processing for sign and speech and this was one of the key issues that I wanted to investigate further in this thesis. The basis of this thesis is firmly within speech research and that is why I wanted to design analogous test batteries for widely used speech perception tests for signers – to find out whether the results for signers would be the same as in speakers’ perception tests. One of the key findings within biology – and more precisely its effects on speech and communication research – is the mirror neuron system. That finding has enabled us to form new theories about evolution of communication, and it all seems to converge on the hypothesis that all communication has a common core within humans. In this thesis speech and sign are discussed as equal and analogical counterparts of communication and all research methods used in speech are modified for sign. Both speech and sign are thus investigated using similar test batteries. Furthermore, both production and perception of speech and sign are studied separately. An additional framework for studying production is given by gesture research using cry sounds. Results of cry sound research are then compared to results from children acquiring sign language. These results show that individuality manifests itself from very early on in human development. Articulation in adults, both in speech and sign, is studied from two perspectives: normal production and re-learning production when the apparatus has been changed. Normal production is studied both in speech and sign and the effects of changed articulation are studied with regards to speech. Both these studies are done by using carrier sentences. Furthermore, sign production is studied giving the informants possibility for spontaneous speech. The production data from the signing informants is also used as the basis for input in the sign synthesis stimuli used in sign perception test battery. Speech and sign perception were studied using the informants’ answers to questions using forced choice in identification and discrimination tasks. These answers were then compared across language modalities. Three different informant groups participated in the sign perception tests: native signers, sign language interpreters and Finnish adults with no knowledge of any signed language. This gave a chance to investigate which of the characteristics found in the results were due to the language per se and which were due to the changes in modality itself. As the analogous test batteries yielded similar results over different informant groups, some common threads of results could be observed. Starting from very early on in acquiring speech and sign the results were highly individual. However, the results were the same within one individual when the same test was repeated. This individuality of results represented along same patterns across different language modalities and - in some occasions - across language groups. As both modalities yield similar answers to analogous study questions, this has lead us to providing methods for basic input for sign language applications, i.e. signing avatars. This has also given us answers to questions on precision of the animation and intelligibility for the users – what are the parameters that govern intelligibility of synthesised speech or sign and how precise must the animation or synthetic speech be in order for it to be intelligible. The results also give additional support to the well-known fact that intelligibility in fact is not the same as naturalness. In some cases, as shown within the sign perception test battery design, naturalness decreases intelligibility. This also has to be taken into consideration when designing applications. All in all, results from each of the test batteries, be they for signers or speakers, yield strikingly similar patterns, which would indicate yet further support for the common core for all human communication. Thus, we can modify and deepen the phonetic framework models for human communication based on the knowledge obtained from the results of the test batteries within this thesis.
Resumo:
Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.
Resumo:
Protein homeostasis is essential for cells to prosper and survive. Various forms of stress, such as elevated temperatures, oxidative stress, heavy metals or bacterial infections cause protein damage, which might lead to improper folding and formation of toxic protein aggregates. Protein aggregation is associated with serious pathological conditions such as Alzheimer’s and Huntington’s disease. The heat shock response is a defense mechanism that protects the cell against protein-damaging stress. Its ancient origin and high conservation among eukaryotes suggest that the response is crucial for survival. The main regulator of the heat shock response is the transcription factor heat shock factor 1 (HSF1), which induces transcription of genes encoding protective molecular chaperones. In vertebrates, a family of four HSFs exists (HSF1-4), with versatile functions not only in coping with acute stress, but also in development, longevity and cancer. Thus, knowledge of the HSFs will aid in our understanding on how cells survive suboptimal circumstances, but will also provide insights into normal physiological processes as well as diseaseassociated conditions. In this study, the function and regulation of HSF2 have been investigated. Earlier gene inactivation experiments in mice have revealed roles for HSF2 in development, particularly in corticogenesis and spermatogenesis. Here, we demonstrate that HSF2 holds a role also in the heat shock response and influences stress-induced expression of heat shock proteins. Intriguingly, DNA-binding activity of HSF2 upon stress was dependent on the presence of intact HSF1, suggesting functional interplay between HSF1 and HSF2. The underlying mechanism for this phenomenon could be configuration of heterotrimers between the two factors, a possibility that was experimentally verified. By changing the levels of HSF2, the expression of HSF1-HSF2 heterotrimer target genes was altered, implementing HSF2 as a modulator of HSF-mediated transcription. The results further indicate that HSF2 activity is dependent on its concentration, which led us to ask the question of how accurate HSF2 levels are achieved. Using mouse spermatogenesis as a model system, HSF2 was found to be under direct control of miR-18, a miRNA belonging to the miR-17~92 cluster/Oncomir-1 and whose physiological function had remained unclear. Investigations on spermatogenesis are severely hampered by the lack of cell systems that would mimic the complex differentiation processes that constitute male germ cell development. Therefore, to verify that HSF2 is regulated by miR-18 in spermatogenesis, a novel method named T-GIST (Transfection of Germ cells in Intact Seminiferous Tubules) was developed. Employing this method, the functional consequences of miR-18-mediated regulation in vivo were demonstrated; inhibition of miR- 18 led to increased expression of HSF2 and altered the expression of HSF2 target genes Ssty2 and Speer4a. Consequently, the results link miR-18 to HSF2-mediated processes such as germ cell maturation and quality control and provide miR-18 with a physiological role in gene expression during spermatogenesis.Taken together, this study presents compelling evidence that HSF2 is a transcriptional regulator in the heat shock response and establishes the concept of physical interplay between HSF2 and HSF1 and functional consequences thereof. This is also the first study describing miRNA-mediated regulation of an HSF.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
The search for new renewable materials has intensified in recent years. Pulp and paper mill process streams contain a number of potential compounds which could be used in biofuel production and as raw materials in the chemical, food and pharmaceutical industries. Prior to utilization, these compounds require separation from other compounds present in the process stream. One feasible separation technique is membrane filtration but to some extent, fouling still limits its implementation in pulp and paper mill applications. To mitigate fouling and its effects, foulants and their fouling mechanisms need to be well understood. This thesis evaluates fouling in filtration of pulp and paper mill process streams by means of polysaccharide model substance filtrations and by development of a procedure to analyze and identify potential foulants, i.e. wood extractives and carbohydrates, from fouled membranes. The model solution filtration results demonstrate that each polysaccharide has its own fouling mechanism, which also depends on the membrane characteristics. Polysaccharides may foul the membranes by adsorption and/or by gel/cake layer formation on the membrane surface. Moreover, the polysaccharides interact, which makes fouling evaluation of certain compound groups very challenging. Novel methods to identify wood extractive and polysaccharide foulants are developed in this thesis. The results show that it is possible to extract and identify wood extractives from membranes fouled in filtration of pulp and paper millstreams. The most effective solvent was found to be acetone:water (9:1 v/v) because it extracted both lipophilic extractives and lignans at high amounts from the fouled membranes and it was also non-destructive for the membrane materials. One hour of extraction was enough to extract wood extractives at high amounts for membrane samples with an area of 0.008 m2. If only qualitative knowledge of wood extractives is needed a simplified extraction procedure can be used. Adsorption was the main fouling mechanism in extractives-induced fouling and dissolved fatty and resin acids were mostly the reason for the fouling; colloidal fouling was negligible. Both process water and membrane characteristics affected extractives-induced fouling. In general, the more hydrophilic regenerated cellulose (RC) membrane fouled less that the more hydrophobic polyethersulfone (PES) and polyamide (PA) membranes independent of the process water used. Monosaccharide and uronic acid units could also be identified from the fouled synthetic polymeric membranes. It was impossible to analyze all monosaccharide units from the RC membrane because the analysis result obtained contained degraded membrane material. One of the fouling mechanisms of carbohydrates was adsorption. Carbohydrates were not potential adsorptive foulants to the sameextent as wood extractives because their amount in the fouled membranes was found to be significantly lower than the amount of wood extractives.
Resumo:
Scarcity of long-term series of sediment-related variables has led watershed managers to apply mathematical models to simulate sediment fluxes. Due to the high efforts for installation and maintenance of sedimentological gauges, tracers have been pointed out as an alternative to validate soil redistribution modelling. In this study, the 137Cs technique was used to assess the WASA-SED model performance at the Benguê watershed (933 km²), in the Brazilian semiarid. Qualitatively, good agreement was found among the 137Cs technique and the WASA-SED model results. Nonetheless, quantitatively great differences, up to two orders of magnitude, were found between the two methods. Among the uncertainties inherent to the 137Cs technique, definition of the reference inventory seems to be a major source of imprecision. In addition, estimations of water and sediment fluxes with mathematical models usually also present high uncertainty, contributing to the quantitative differences of the soil redistribution estimates with the two methods.
Resumo:
Estimates of broiler welfare have subjective character. Nowadays, researchers seek non-invasive features or indicators that may describe this condition in animal production. The aim of this study was to identify acoustic parameters to estimate broiler welfare using the following five vocalization acoustic parameters: energy, spectral centroid, bandwidth, first formant, and second formant. The database that generated the model was obtained from a field experiment with 432 broilers, which half were Cobb® and half, Ross® breed, from day 21 to 42, containing bird vocalizations under either welfare or stress conditions. The results of the experiment generated responses to the tested conditions of gender, genetic strain, and welfare. The proposed model was based on the specific response of mean weights for each situation of stress and well-being. From the results, a model was developed to estimate the welfare condition of broilers from the registered information linked to their vocalization.
Resumo:
Hydrological models are important tools that have been used in water resource planning and management. Thus, the aim of this work was to calibrate and validate in a daily time scale, the SWAT model (Soil and Water Assessment Tool) to the watershed of the Galo creek , located in Espírito Santo State. To conduct the study we used georeferenced maps of relief, soil type and use, in addition to historical daily time series of basin climate and flow. In modeling were used time series corresponding to the periods Jan 1, 1995 to Dec 31, 2000 and Jan 1, 2001 to Dec 20, 2003 for calibration and validation, respectively. Model performance evaluation was done using the Nash-Sutcliffe coefficient (E NS) and the percentage of bias (P BIAS). SWAT evaluation was also done in the simulation of the following hydrological variables: maximum and minimum annual daily flowsand minimum reference flows, Q90 and Q95, based on mean absolute error. E NS and P BIAS were, respectively, 0.65 and 7.2% and 0.70 and 14.1%, for calibration and validation, indicating a satisfactory performance for the model. SWAT adequately simulated minimum annual daily flow and the reference flows, Q90 and Q95; it was not suitable in the simulation of maximum annual daily flows.
Resumo:
ABSTRACT The present study aims to present the main concepts of the sugarcane straw to energy planning. Throughout the study, the subject is contextualized highlighting broader aspects of sustainability, which is considered the main driver towards agro-energy modernization. Concerning sugarcane straw, we first evaluated its availability regarding technical and economic aspects, and then it summarized the straw production chain for energy supply purposes. As a proposal to support agro-energy planning, it is presented some spatial tools that have been barely used in the Brazilian energy planning context so far. Therefore, working on straw to electricity associated with supply chain basis, we developed a conceptual model to spatially assess this bioenergy system. Using the model proposed, it is described the whole supply chain at state level, which accounted the potential of a single mill to explore straw, as well as main costs associated with straw acquisition, investments on the straw recovery routes and electricity transmission. Bearing these concepts in mind, it is fully believed that spatial analysis can bring important information for agro-energy action plans.