973 resultados para Metal-working machinery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals (up to 1 cm size) of K, Rb and Cs periodates have been grown in silica gel. In general, good quality crystals were obtained in gel of specific gravity 1.04 and pH 4. The metal/iodine ratios were determined and compared with calculated values. Morphological studies were carried out using a bicircle optical goniometer. Other characterization methods include X-ray diffraction, optical absorption, differential scanning calorimetry and optical microscopy. Microscopic examination of CsIO4 crystals in particular has revealed the existence of ferroelastic domains in the crystal. The structural basis for the occurence of ferroelasticity in this crystal is discussed and the high temperature space group is predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the reaction of metal chlorides, MCl2 (M = Mn, Co, Ni, Cu, Zn) with PPHF at room temperature have shown that Mn, Co and Zn form the corresponding metal fluorides, MF2, while Ni and Cu form their dipyridine metal(II) dichloride complexes. Nickel and copper complexes further undergo fluorination and complexation by potassium hydrogen fluoride in PPHF to form KNiF3 and KCuF3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot-working characteristics of Zircaloy-2 have been studied in the temperature range of 650 to 950°C and in the strain-rate range of 10−3 to 102 s−1 using power dissipation maps which describe the variation of the efficiency of power dissipation, η = 2m /(m + 1) where m is the strain-rate sensitivity of flow stress. The individual domains exhibited by the map have been interpreted and validated by detailed metallographic investigations. Dynamic recrystallization occurs in the temperature range of 730 to 830°C and in the strain-rate range of 10−2 to 2 s−1. The peak efficiency occurs at 800°C and 0.1 s−1 which may be considered as the optimum hot-working parameters in the α-phase field of Zircaloy-2. Superplastic behaviour, characterized by a high efficiency of power dissipation is observed at temperatures greater than 860°C and at strain rates lower than 10−2 s−1. When deformed at 650°C and 10−3 s−1, the primary restoration mechanism is dynamic recovery, while at rates higher than 2s−1, the material exhibits microstructural instabilities in the form of localized shear bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insertion reactions of zirconium(IV) n-butoxide and titanium(IV) n-butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion. The intermediate metallacycle extrudes a new heterocumulene, different from the two that have inserted leading to metathesis. As the reaction is reversible, catalytic metathesis is feasible. In stoichiometric reactions heterocumulene insertion, metathesis and metathesis cum insertion products are observed. However, catalytic amounts of the metal alkoxide primarily led to metathesis products. It is shown that zirconium alkoxides promote catalytic metathesis (isocyanates, carbon dioxide) more efficiently than the corresponding titanium alkoxide. The difference in the metathetic activity of these alkoxides has been explained by a computational study using model complexes Ti(OMe)(4) (1bTi) and Zr(OMe)(4) (1bZr). The computation was carried out at the B3LYP/LANL2DZ level of theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of CO with Cu, Pd, and Ni at different coverages of the metals on solid substrates has been investigated by He II and core-level spectroscopies, after the nature of variation of the metal core-level binding energies with the coverage or the cluster size is established. The separation between the (1 pi + 5 sigma) and 4 sigma levels of CO increases with a decrease in the size of the metal clusters, accompanied by an increase in the desorption temperature. In the case of Cu, the intramolecular shakeup satellite of CO disappears on small clusters. More importantly, CO dissociates on small Ni clusters, clearly confirming that metal-CO interaction strength increases with a decrease in the cluster size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factors contributing to the variations in the Cu(I)-Cu(I) distances in two clusters with identical ligand and coordination geometries have been analyzed. While the hexamer, 4, exhibits metal-metal distances in the range 2.81-3.25 Angstrom, shorter contacts are found in the corresponding tetramer, 3 (2.60-2.77 Angstrom). EHT calculations reveal relatively little attractive interactions in the corresponding Cu-4(4+) and Cu-6(6+) cores. Introduction of the ligands lowers the reduced overlap populations between the metals further. MNDO calculations with model electrophiles have been carried out to determine the bite angle requirements of the ligands. These are satisfactorily met in the structures of both 3 and 4. The key geometric feature distinguishing 3 and 4 is the Cu-S-Cu angle involving the bridging S- unit. In 4, the corresponding angles are about 90 degrees, while the values in 3 are smaller (70-73 degrees). Wider angles are computed to be energetically favored and are characterized by an open three-center bond and a long Cu-Cu distance. The bridging angles are suggested to be primarily constrained by the mode of oligomerization. Implications of these results for the stability and reactivity of these clusters and for short metal-metal distances in d(10) systems in general are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-Cr/Al2O3 metal-ceramic composites prepared by hydrogen reduction at different temperatures and for different periods have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, transmission electron microscopy, and energy-dispersive x-ray spectroscopy in order to obtain information on the nature of the metallic species formed. Total reduction of Fe3+ does not occur by increasing the reduction time at 1320 K from 1 to 30 h, and the amount of superparamagnetic metallic species is essentially constant (about 10%). Temperatures higher than 1470 K are needed to achieve nearly total reduction of substitutional Fe3+. Interestingly, iron favors the reduction of chromium. The composition of the Fe-Cr particles is strongly dependent on their size, the Cr content being higher in particles smaller than 10 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss briefly some of the basic issues involved in the field of metal-insulator transition. We point out why this area is a profitable area of research. We also suggest certain definite action plan for this area in particular and the area of low temperature solid state physics in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot-working characteristics of IN-718 are studied in the temperature range 900 °C to 1200 °C and strain rate range 0.001 to 100 s−1 using hot compression tests. Processing maps for hot working are developed on the basis of the strain-rate sensitivity variations with temperature and strain rate and interpreted using a dynamic materials model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring at 950 °C and 0.001 s−1 with an efficiency of power dissipation of 37 pct and the other at 1200 °C and 0.1 s−1 with an efficiency of 40 pct. Dynamic recrystallization in the former domain is nucleated by the δ(Ni3Nb) precipitates and results in fine-grained microstructure. In the high-temperature DRX domain, carbides dissolve in the matrix and make interstitial carbon atoms available for increasing the rate of dislocation generation for DRX nucleation. It is recommended that IN-718 may be hot-forged initially at 1200 °C and 0.1 s−1 and finish-forged at 950 °C and 0.001 s−1 so that fine-grained structure may be achieved. The available forging practice validates these results from processing maps. At temperatures lower than 1000 °C and strain rates higher than 1 s−1 the material exhibits adiabatic shear bands. Also, at temperatures higher than 1150°C and strain rates more than 1s−1, IN-718 exhibits intercrystalline cracking. Both these regimes may be avoided in hotworking IN-718.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of (amino)spirocyclotriphosphazenes, N3P3(NMe2)4(NHCH2CH2NH) (1) and N3P3(NMe2)4(NHCH2CH2CH2NH) (2) with molybdenum- and tungsten-hexacarbonyls give complexes of the type [M(CO)4(L)] (L = 1 or 2) in which the phosphazenes act as bidentate chelating ligands via one of the phosphazene ring nitrogen atoms and one of the nitrogen atoms of the diaminoalkane moiety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments have been conducted to obtain the optimum conditions of hydrogen ion concentration of feed and strip phases and concentration of the carrier ALAMINE 336, in the extraction of Cr(VI) and Hg(II) using two different types of liquid membranes-bulk liquid membrane and emulsion liquid membrane. Experiments have also been carried out to find the effect of metal loading and the effect of extraction time on metal flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss briefly some of the basic issues involved in the field of metal-insulator transition. We point out why this area is a profitable area of research. We also suggest certain definite action plan for this area in particular and the area of low temperature solid state physics in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot-working characteristics of IN-718 are studied in the temperature range 900 degrees C to 1200 degrees C and strain rate range 0.001 to 100 s(-1) using hot compression tests. Processing maps for hot working are developed on the basis of the strain-rate sensitivity variations with temperature and strain rate and interpreted using a dynamic materials model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring at 950 degrees C and 0.001 s(-1) with an efficiency of power dissipation of 37 pct and the other at 1200 degrees C and 0.1 s(-1) with an efficiency of 40 pct. Dynamic recrystallization in the former domain is nucleated by the delta(Ni3Nb) precipitates and results in fine-grained microstructure. In the high-temperature DRX domain, carbides dissolve in the matrix and make interstitial carbon atoms available for increasing the rate of dislocation generation for DRX nucleation. It is recommended that IN-718 may be hot-forged initially at 1200 degrees C and 0.1 s(-1) and finish-forged at 950 degrees C and 0.001 s(-1) so that fine-grained structure may be achieved. The available forging practice validates these results from processing maps. At temperatures lower than 1000 degrees C and strain rates higher than 1 s(-1), the material exhibits adiabatic shear bands. Also, at temperatures higher than 1150 degrees C and strain rates more than 1 s(-1), IN-718 exhibits intercrystalline cracking. Both these regimes may be avoided in hot-working IN-718.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During experiments carried out to find out a suitable contact metal for electronic components based on high-T(c) superconductor films (Y-Ba-Cu-O), it is observed that there is an asymmetry in the U-I characteristics if the two contacts are made of different metals. The asymmetry is more pronounced if one of the contact metals is aluminium. The asymmetry is lowest if one of the contact metals is silver and the other gold.