969 resultados para Mercury, Screen printed electrode, Burkina Faso, Pollution, Groundwater


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in situ carbon-grafted alkaline iron electrode prepared from the active material obtained by decomposing the alpha-FeC2O4 center dot 2H(2)O-polyvinyl alcohol (PVA) composite at 600 degrees C in a vacuum is reported. The active material comprises a mixture of a-Fe and Fe3O4 with the former as the prominent component. A specific discharge capacity in excess of 400 mA h g(-1) at a current density of 100 mA g(-1) is obtained with a faradaic efficiency of 80% for the iron electrode made from carbon-grafted active material (CGAM). The enhanced performance of the alkaline iron electrode is attributed to the increased amount of metallic iron in the active material and its concomitant in situ carbon grafting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole (PPY) is grown on reduced graphene oxide (RGO) and the composite is studied as a catalyst for O-2 electrode in Li-O-2 cells. PPY is uniformly distributed on the two dimensional RGO layers. Li-O-2 cells assembled in a non-aqueous electrolyte using RGO-PPY catalyst exhibit an initial discharge capacity as high as 3358 mAh g(-1) (3.94 mAh cm(-2)) at a current density of 0.3 mA cm(-2). The voltage gap between the charge and discharge curves is less for Li-O-2(RGO-PPY) cell in comparison with Li-O-2(RGO) cell. The Li-O-2(RGO-PPY) cell delivers a discharge capacity of 550 mAh g(-1) (0.43 mAh cm(-2)) at a current density of 1.0 mA cm(-2). The results suggest that RGO-PPY is a promising catalyst of O-2 electrode for high rate rechargeable Li-O-2 cells. (C) 2014 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater contamination is a serious concern in India. Major geogenic contaminants include fluoride, arsenic and iron, while common anthropogenic contaminants include nitrate, metals, organics and microbial contamination. Besides, known point and diffuse sources, groundwater c ontamination from inf iltration of pit to ilet leachate is an emerging concern. The study area of this paper is Kolar district in Karnataka that is hot spot of fluoride contamination. The absence of fluoride contamination in Mulbagal town and the alterations in groundwater chemistry from infiltration of pit toilet leachate motivated the author to examine the possible linkages between anthropogenic contamination and fluoride concentration in groundwater of Mulbagal town. Analysis of the groundwater chemistry revealed that the groundwater in Mulbagal town is under saturated with respect to calcite that suppresses the dissolution of fluorite and the fluoride concentration in the groundwater. The slightly acidic pH of the groundwater is considered responsible to facilitate calcite dissolution under saturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the application of a bismuth modified exfoliated graphite electrode in the detection of arsenic in water. Bismuth film was electrodeposited onto an exfoliated graphite (EG) electrode at a potential of -600 mV. The modification of EG resulted in an increase in the electroactive surface area of the electrode and consequently peak current enhancement in Ru(NH3)(6)(2+/13+) redox probe. Square wave anodic stripping voltammetry was performed with the modified electrode (EG-Bi) in As (III) solutions at the optimum conditions of pH 6, deposition potential of -600 mV and pre-concentration time of 180s. The EG-Bi was able to detect As (III) to the limit of 5 mu g L-1 and was not susceptible to many interfering cations except Cu (II). The EG-Bi is low cost and easy to prepare. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbonization of milk-free coconut kernel pulp is carried out at low temperatures. The carbon samples are activated using KOH, and electrical double-layer capacitor (EDLC) properties are studied. Among the several samples prepared, activated carbon prepared at 600 A degrees C has a large surface area (1,200 m(2) g(-1)). There is a decrease in surface area with increasing temperature of preparation. Cyclic voltammetry and galvanostatic charge-discharge studies suggest that activated carbons derived from coconut kernel pulp are appropriate materials for EDLC studies in acidic, alkaline, and non-aqueous electrolytes. Specific capacitance of 173 F g(-1) is obtained in 1 M H2SO4 electrolyte for the activated carbon prepared at 600 A degrees C. The supercapacitor properties of activated carbon sample prepared at 600 A degrees C are superior to the samples prepared at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel colorimetric probe 1 based on the picolyl moiety has been designed and synthesized. Probe 1 is composed of a pyrene and a bispicolyl amine (BPA) unit, in which the BPA moiety acts as a binding unit and the binding phenomenon is sensed from the changes in the signaling subunit. The probe detects Cu2+ specifically in water and both Cu2+ and Hg2+ efficiently in neutral Brij-58 micellar media. The probe shows a color change visible to the naked eye upon addition of metal ions. Notably, in a micellar medium, probe 1 can detect both the Cu2+ and Hg2+ ions even at parts-per-billion levels. Furthermore, the probe shows ratiometric detection of both the metal ions making the sensing quantitative. The two metal ions could be discriminated both visibly under a UV lamp and with the use of fluorescence spectroscopy. The probe could be also used in biological cell lines for the detection of both Hg2+ and Cu2+ ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous alpha-Fe2O3 nanostructures have been synthesized by a simple sol-gel route. The alpha-Fe2O3 nanostructures are poorly crystalline and porous with BET surface area of 386 m(2) g(-1). The high discharge capacitance of alpha-Fe2O3 electrodes is 300 F g(-1) when the electrodes are cycled in 0.5 M Na2SO3 at a current density of 1 A g(-1). The capacitance retention after 1000 cycles is about 73% of the initial capacitance at a current density of 2 A g(-1). The high discharge capacitance of alpha-Fe2O3 in comparison with the literature reports are attributed to high surface area and porosity of the iron oxide prepared in the present study. As the iron oxides are inexpensive, the capacity of alpha-Fe2O3 is expected to be of potential use for supercapacitor application. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable lithium batteries have ushered the wireless revolution over last two decades and are now matured to enable green automobiles. However, the growing concern on scarcity and large-scale applications of lithium resources have steered effort to realize sustainable sodium-ion batteries, Na and Fe being abundant and low-cost charge carrier and redox centre, respectively. However, their performance is limited owing to low operating voltage and sluggish kinetics. Here we report a hitherto-unknown material with entirely new composition and structure with the first alluaudite-type sulphate framework, Na2Fe2(SO4)(3), registering the highest-ever Fe3+/ Fe2+ redox potential at 3.8V (versus Na, and hence 4.1V versus Li) along with fast rate kinetics. Rare-metal-free Na-ion rechargeable battery system compatible with the present Li-ion battery is now in realistic scope without sacrificing high energy density and high power, and paves way for discovery of new earth-abundant sustainable cathodes for large-scale batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemical lead ion sensor has been developed by modification of carbon paste electrode (CPE) using polypyrrole functionalized with iminodiacetic acid (IDA-PPy) containing carboxyl group. The electrochemical response of Pb2+ ion on the IDA-PPy modified CPE has been evaluated and the controling parameters have been optimized using differential pulse anodic stripping voltammetry (DPASV). The IDA-PPy modified CPE shows a linear correlation for Pb2+ concentrations in the range of 1 x 10(-6) to 5 x 10(-9) M and the lower detection limit of Pb2+ has been found to be 9.6 x 10(-9) M concentration. Other tested metal ions, namely Cu2+, Cd2+, Co2+, Hg2+, Ni2+ and Zn2+, do not exhibit any voltammetric stripping response below 1 x 10(-7) M concentration. However, the Pb2+ response is affected in the presence of molar equivalents or higher concentrations of Cu2+, Cd2+ and Co2+ ions in binary systems with Pb2+, consequent to their ability to bind with iminodiacetic acid, while Hg2+, Ni2+ and Zn2+ do not interfere at all. A good correlation has been observed between the lead concentrations as analyzed by DPASV using IDA-PPy modified CPE and atomic absorption spectrophotometry for a lead containing industrial effluent sample. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manipulation of matter at the nanoscale is a way forward to move beyond our current choices in electrochemical energy storage and conversion technologies with promise of higher efficiency, environmental benignity, and cost-effectiveness. Electrochemical processes being basically surface phenomena, tailored multifunctional nanoarchitecturing can lead to improvements in terms of electronic and ionic conductivities, diffusion and mass transport, and electron transfer and electrocatalysis. The nanoscale is also a domain in which queer properties surface: those associated with conversion electrodes, ceramic particles enhancing the conductivity of polymer electrolytes, and transition metal oxide powders catalyzing fuel cell reactions, to cite a few. Although this review attempts to present a bird's eye view of the vast literature that has accumulated in this rather infant field, it also lists a few representative studies that establish the beneficial effects of going `nano'. Investigations on nanostructuring and use of nanoparticles and nanoarchitectures related to lithium-ion batteries (active materials and electrolytes), supercapacitors (electrical double-layer capacitors, supercapacitors based on pseudo-capacitance, and hybrid supercapacitors), and fuel cells (electrocatalysts, membranes and hydrogen storage materials) are highlighted. (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn0.35Ni0.55Fe0.1O2 (composition:Li1.2Mn0.54Ni0.22Fe0.04O2) is prepared by inverse microemulsion method and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The X-ray diffraction, scanning electron microscopy, and transmission electron microscopy studies suggested that well crystalline submicronsized particles are obtained. The product samples possess mesoporosity with broadly distributed pores around 10 similar to 50 nm diameter. Pore volume and surface area decrease by increasing the temperature of preparation. However, the electrochemical activity of the composite samples increases with an increase in temperature. The discharge capacity values of the samples prepared at 900 degrees C are about 186 mAh g(-1) at a specific current of 25 mA g(-1) with an excellent cycling stability. The composite sample also possesses high rate capability. The high rate capability is attributed to the porous nature of the material. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uplift resistance of pipelines buried in sands, in the presence of inclined groundwater flow, considering both upward and downward flow directions, has been determined by using the lower bound finite elements limit analysis in conjunction with nonlinear optimization. A correction factor (f (gamma) ), which needs to be multiplied with the uplift factor (F (gamma) ), has been computed to account for groundwater seepage. The variation of f (gamma) has been obtained as a function of i(gamma (w) /gamma (sub) ) for different horizontal inclinations (theta) of groundwater flow; where i = absolute magnitude of hydraulic gradient along the direction of flow, gamma (w) is the unit weight of water and gamma (sub) is the submerged unit weight of soil mass. For a given magnitude of i, there exists a certain critical value of theta for which the magnitude of f (gamma) becomes the minimum. An example has also been presented to illustrate the application of the results obtained for designing pipelines in presence of groundwater seepage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we demonstrate a Si-mediated environmentally friendly reduction of graphene oxide (GO) and the fabrication of its hybrids with multiwall carbon nanotubes and nanofibers. The reduction of GO is facilitated by nascent hydrogen generated by the reaction between Si and KOH at similar to 60 degrees C. The overall process takes 5 to 7 minutes and 10 to 15 mu m of Si is consumed each time. We show that Si can be used multiple times and the rGO based hybrids can be used for electrode materials.