936 resultados para Maximum entropy
Resumo:
This overview examines available circum-Antarctic glacial history archives on land, related to developments after the Last Glacial Maximum (LGM). It considers the glacial-stratigraphic and morphologic records and also biostratigraphical information from moss banks, lake sediments and penguin rookeries, with some reference to relevant glacial marine records. It is concluded that Holocene environmental development in Antarctica differed from that in the Northern Hemisphere. The initial deglaciation of the shelf areas surrounding Antarctica took place before 10000 C-14 yrs before present(sp), and was controlled by rising global sea level. This was followed by the deglaciation of some presently ice-free inner shelf and land areas between 10000 and 8000 yr sp. Continued deglaciation occurred gradually between 8000 yr sp and 5000 yr sp. Mid-Holocene glacial readvances are recorded from various sites around Antarctica. There are strong indications of a circum-Antarctic climate warmer than today 4700-2000 yr sp. The best dated records from the Antarctic Peninsula and coastal Victoria Land suggest climatic optimums there from 4000-3000 yr sp and 3600-2600 yr sp, respectively. Thereafter Neoglacial readvances are recorded. Relatively limited glacial expansions in Antarctica during the past few hundred years correlate with the Little Ice Age in the Northern Hemisphere.
Resumo:
This paper is the maritime and sub–Antarctic contribution to the Scientific Committee for Antarctic Research (SCAR) Past Antarctic Ice Sheet Dynamics (PAIS) community Antarctic Ice Sheet reconstruction. The overarching aim for all sectors of Antarctica was to reconstruct the Last Glacial Maximum (LGM) ice sheet extent and thickness, and map the subsequent deglaciation in a series of 5000 year time slices. However, our review of the literature found surprisingly few high quality chronological constraints on changing glacier extents on these timescales in the maritime and sub–Antarctic sector. Therefore, in this paper we focus on an assessment of the terrestrial and offshore evidence for the LGM ice extent, establishing minimum ages for the onset of deglaciation, and separating evidence of deglaciation from LGM limits from those associated with later Holocene glacier fluctuations. Evidence included geomorphological descriptions of glacial landscapes, radiocarbon dated basal peat and lake sediment deposits, cosmogenic isotope ages of glacial features and molecular biological data. We propose a classification of the glacial history of the maritime and sub–Antarctic islands based on this assembled evidence. These include: (Type I) islands which accumulated little or no LGM ice; (Type II) islands with a limited LGM ice extent but evidence of extensive earlier continental shelf glaciations; (Type III) seamounts and volcanoes unlikely to have accumulated significant LGM ice cover; (Type IV) islands on shallow shelves with both terrestrial and submarine evidence of LGM (and/or earlier) ice expansion; (Type V) Islands north of the Antarctic Polar Front with terrestrial evidence of LGM ice expansion; and (Type VI) islands with no data. Finally, we review the climatological and geomorphological settings that separate the glaciological history of the islands within this classification scheme.
Resumo:
A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.
Resumo:
We consider the problem of twenty questions with noisy answers, in which we seek to find a target by repeatedly choosing a set, asking an oracle whether the target lies in this set, and obtaining an answer corrupted by noise. Starting with a prior distribution on the target's location, we seek to minimize the expected entropy of the posterior distribution. We formulate this problem as a dynamic program and show that any policy optimizing the one-step expected reduction in entropy is also optimal over the full horizon. Two such Bayes optimal policies are presented: one generalizes the probabilistic bisection policy due to Horstein and the other asks a deterministic set of questions. We study the structural properties of the latter, and illustrate its use in a computer vision application.
Resumo:
Abstract Our study in the Başyayla Valley in northeastern Anatolia showed evidence of four glacier advances that built terminal and lateral moraines. Surface exposure dating of boulders on these moraines showed that the Maximum Ice Extent (MIE) was asynchronous with the global Last Glacial Maximum (LGM; 22.1 ± 4.3 thousand years; ka). The local {MIE} took place at least 57.0 ± 3.5 ka ago. The extent of the Başyayla Glacier during this advance is not known exactly because the boulders are only preserved on a lateral moraine. The next advance was prior to 41.5 ± 2.5 ka, and it descended down the valley to approximately 2320 m above sea level (m a.s.l.), with a glacier length of 5.3 km. During the early global LGM, the Başyayla Glacier extended for a distance of 4.9 km down to approx. 2430 m a.s.l. The last recorded advance occurred during the global LGM. This extension was 0.7 km smaller than the local {MIE} and its terminus reached 2490 m a.s.l. only. The exposure ages of boulders in a retreat position at an altitude of approx. 3045 m a.s.l. indicate that the valley has remained ice-free since the Lateglacial period. Therefore, the Lateglacial extent was limited to the cirque system in the uppermost part of the catchment. Furthermore, Holocene glacier oscillations seem to be either absent or restricted to solifluction in the whole catchment and to rock glacier movements in the southern tributary of the Başyayla Valley system.
Resumo:
We used cosmogenic 10Be and 36Cl to establish the timing of the onset of deglaciation after the Last Glacial Maximum of the Reuss Glacier, one of the piedmont lobes of the Alpine ice cap that reached the northern Alpine foreland in Switzerland. In this study, we sampled erratic boulders both at the frontal position in the foreland (Lenzburg and Wohlen, canton Aargau) and at the lateral Alpine border position (Seeboden moraine, Rigi, canton Schwyz). The minimum age for the beginning of retreat is 22.2 ± 1.0 ka at the frontal (terminal) position and 20.4 ± 1.0 ka at the lateral position. These ages are directly comparable with exposure ages from the other piedmont lobes in the northern Alpine foreland. Our data from the mountain called Rigi, do not support the hypothesis that boulders located external to the Seeboden moraine were deposited prior to the last glacial cycle. We present a first exposure age from an erratic boulder in a retreat position in the Alpine foreland. The Reuss Glacier was approximately 12 km behind the maximal extent no later than at 18.6 ± 0.9 ka.
Resumo:
The abrupt Northern Hemispheric warming at the end of the twentieth century has been attributed to an enhanced greenhouse effect. Yet Greenland and surrounding subpolar North Atlantic remained anomalously cold in 1970s to early 1990s. Here we reconstructed robust Greenland temperature records (North Greenland Ice Core Project and Greenland Ice Sheet Project 2) over the past 2100 years using argon and nitrogen isotopes in air trapped within ice cores and show that this cold anomaly was part of a recursive pattern of antiphase Greenland temperature responses to solar variability with a possible multidecadal lag. We hypothesize that high solar activity during the modern solar maximum (approximately 1950s–1980s) resulted in a cooling over Greenland and surrounding subpolar North Atlantic through the slowdown of Atlantic Meridional Overturning Circulation with atmospheric feedback processes.
Resumo:
AIM To evaluate the diagnostic value (sensitivity, specificity) of positron emission mammography (PEM) in a single site non-interventional study using the maximum PEM uptake value (PUVmax). PATIENTS, METHODS In a singlesite, non-interventional study, 108 patients (107 women, 1 man) with a total of 151 suspected lesions were scanned with a PEM Flex Solo II (Naviscan) at 90 min p.i. with 3.5 MBq 18F-FDG per kg of body weight. In this ROI(region of interest)-based analysis, maximum PEM uptake value (PUV) was determined in lesions, tumours (PUVmaxtumour), benign lesions (PUVmaxnormal breast) and also in healthy tissues on the contralateral side (PUVmaxcontralateral breast). These values were compared and contrasted. In addition, the ratios of PUVmaxtumour / PUVmaxcontralateral breast and PUVmaxnormal breast / PUVmaxcontralateral breast were compared. The image data were interpreted independently by two experienced nuclear medicine physicians and compared with histology in cases of suspected carcinoma. RESULTS Based on a criteria of PUV>1.9, 31 out of 151 lesions in the patient cohort were found to be malignant (21%). A mean PUVmaxtumour of 3.78 ± 2.47 was identified in malignant tumours, while a mean PUVmaxnormal breast of 1.17 ± 0.37 was reported in the glandular tissue of the healthy breast, with the difference being statistically significant (p < 0.001). Similarly, the mean ratio between tumour and healthy glandular tissue in breast cancer patients (3.15 ± 1.58) was found to be significantly higher than the ratio for benign lesions (1.17 ± 0.41, p < 0.001). CONCLUSION PEM is capable of differentiating breast tumours from benign lesions with 100% sensitivity along with a high specificity of 96%, when a threshold of PUVmax >1.9 is applied.