948 resultados para Materials processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a variety high-aspect-ratio nanostructures have been grown and profiled for various applications ranging from field emission transistors to gene/drug delivery devices. However, fabricating and processing arrays of these structures and determining how changing certain physical parameters affects the final outcome is quite challenging. We have developed several modules that can be used to simulate the processes of various physical vapour deposition systems from precursor interaction in the gas phase to gas-surface interactions and surface processes. In this paper, multi-scale hybrid numerical simulations are used to study how low-temperature non-equilibrium plasmas can be employed in the processing of high-aspect-ratio structures such that the resulting nanostructures have properties suitable for their eventual device application. We show that whilst using plasma techniques is beneficial in many nanofabrication processes, it is especially useful in making dense arrays of high-aspect-ratio nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigate previous claims that a region in the left posterior superior temporal sulcus (pSTS) is more activated by audiovisual than unimodal processing. First, we compare audiovisual to visual-visual and auditory-auditory conceptual matching using auditory or visual object names that are paired with pictures of objects or their environmental sounds. Second, we compare congruent and incongruent audiovisual trials when presentation is simultaneous or sequential. Third, we compare audiovisual stimuli that are either verbal (auditory and visual words) or nonverbal (pictures of objects and their associated sounds). The results demonstrate that, when task, attention, and stimuli are controlled, pSTS activation for audiovisual conceptual matching is 1) identical to that observed for intramodal conceptual matching, 2) greater for incongruent than congruent trials when auditory and visual stimuli are simultaneously presented, and 3) identical for verbal and nonverbal stimuli. These results are not consistent with previous claims that pSTS activation reflects the active formation of an integrated audiovisual representation. After a discussion of the stimulus and task factors that modulate activation, we conclude that, when stimulus input, task, and attention are controlled, pSTS is part of a distributed set of regions involved in conceptual matching, irrespective of whether the stimuli are audiovisual, auditory-auditory or visual-visual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This fMRI study investigates how audiovisual integration differs for verbal stimuli that can be matched at a phonological level and nonverbal stimuli that can be matched at a semantic level. Subjects were presented simultaneously with one visual and one auditory stimulus and were instructed to decide whether these stimuli referred to the same object or not. Verbal stimuli were simultaneously presented spoken and written object names, and nonverbal stimuli were photographs of objects simultaneously presented with naturally occurring object sounds. Stimulus differences were controlled by including two further conditions that paired photographs of objects with spoken words and object sounds with written words. Verbal matching, relative to all other conditions, increased activation in a region of the left superior temporal sulcus that has previously been associated with phonological processing. Nonverbal matching, relative to all other conditions, increased activation in a right fusiform region that has previously been associated with structural and conceptual object processing. Thus, we demonstrate how brain activation for audiovisual integration depends on the verbal content of the stimuli, even when stimulus and task processing differences are controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxides of copper (CuxO) are fascinating materials due to their remarkable optical, electrical, thermal and magnetic properties. Nanostructuring of CuxO can further enhance the performance of this important functional material and provide it with unique properties that do not exist in its bulk form. Three distinctly different phases of CuxO, mainly CuO, Cu2O and Cu4O3, can be prepared by numerous synthesis techniques including, vapour deposition and liquid phase chemical methods. In this article, we present a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with nanostructured CuxO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental investigation of functionally graded calcium phosphate-based bio-active films on Ti-6A1-4V orthopaedic alloy prepared in an RF magnetron sputtering plasma reactor is reported. The technique involves concurrent sputtering of Hydroxyapatite (HA) and Ti targets, which results in remarkably enhanced adhesion of the film to the substrate and stability of the interface. The films have been characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XPS data show that the films are composed of O, Ca, P and Ti, and reveal the formation of O=P groups and hybridization of O-Ca-P. The XRD pattern shows that the Ca-P thin films are of crystalline calcium oxide phosphate (4CaO·P2O5) with preferred orientation varying with processing parameters. High-resolution optical emission spectra show that the emission of CaO is dominant. The CaO, PO and CaPO species are strongly influenced by deposition conditions. The introduction of Ti element during deposition provides a stable interface between bio-inert substrates Ti-6A1-4V and bioactive HA coating. In-vitro cell culturing tests suggest excellent biocompatibility of the Ca-P-Ti films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drying is a key processing techniques used in food engineering which demands continual developments on advanced analysis techniques in order to optimize the product and the process. In this regard, plant based materials are a frequent subject of interest where microstructural studies can provide a clearer understanding on the fundamental physical mechanisms involved. In this context, considering numerous challenges of using conventional numerical grid-based modelling techniques, a meshfree particle based model was developed to simulate extreme deformations of plant microstructure during drying. The proposed technique is based on a particle based meshfree method: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). A tissue model was developed by aggrading individual cells modelled with SPH-DEM coupled approach by initializing the cells as hexagons and aggregating them to form a tissue. The model also involves a middle lamella resembling real tissues. Using the model, different dried tissue states were simulated with different moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model is capable of simulating plant tissues at lower moisture contents which results in excessive shrinkage and cell wall wrinkling. Model predictions were compared with experimental findings and a fairly good agreement was observed both qualitatively and quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to build high-fidelity 3D representations of the environment from sensor data is critical for autonomous robots. Multi-sensor data fusion allows for more complete and accurate representations. Furthermore, using distinct sensing modalities (i.e. sensors using a different physical process and/or operating at different electromagnetic frequencies) usually leads to more reliable perception, especially in challenging environments, as modalities may complement each other. However, they may react differently to certain materials or environmental conditions, leading to catastrophic fusion. In this paper, we propose a new method to reliably fuse data from multiple sensing modalities, including in situations where they detect different targets. We first compute distinct continuous surface representations for each sensing modality, with uncertainty, using Gaussian Process Implicit Surfaces (GPIS). Second, we perform a local consistency test between these representations, to separate consistent data (i.e. data corresponding to the detection of the same target by the sensors) from inconsistent data. The consistent data can then be fused together, using another GPIS process, and the rest of the data can be combined as appropriate. The approach is first validated using synthetic data. We then demonstrate its benefit using a mobile robot, equipped with a laser scanner and a radar, which operates in an outdoor environment in the presence of large clouds of airborne dust and smoke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superhydrophobicity is directly related to the wettability of the surfaces. Cassie-Baxter state relating to geometrical configuration of solid surfaces is vital to achieving the Superhydrophobicity and to achieve Cassie-Baxter state the following two criteria need to be met: 1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures [1]. In this paper we discuss different measurements used to characterise/determine the superhydrophobic surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pcf11p, an essential subunit of the yeast cleavage factor IA, is required for pre‐mRNA 3′ end processing, binds to the C‐terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) and is involved in transcription termination. We show that the conserved CTD interaction domain (CID) of Pcf11p is essential for cell viability. Interestingly, the CTD binding and 3′ end processing activities of Pcf11p can be functionally uncoupled from each other and provided by distinct Pcf11p fragments in trans. Impaired CTD binding did not affect the 3′ end processing activity of Pcf11p and a deficiency of Pcf11p in 3′ end processing did not prevent CTD binding. Transcriptional run‐on analysis with the CYC1 gene revealed that loss of cleavage activity did not correlate with a defect in transcription termination, whereas loss of CTD binding did. We conclude that Pcf11p is a bifunctional protein and that transcript cleavage is not an obligatory step prior to RNAP II termination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic light emitting diodes (OLEDs), as an emerging technology for display and solid state lighting application, have many advantages including self-emission, lightweight, flexibility, low driving voltage, low power consumption, and low production cost. With the advancement of light emitting materials development and device architecture optimization, mobile phones and televisions based on OLED technology are already in the market. However, to obtain efficient, stable and pure blue emission than producing lower-energy colors is still one of the important subjects of these challenges. Full color and pure white light can be achieved only having stable blue emitting materials. To address this issue, significant effort has been devoted to develop novel blue light emitting materials in the past decade aiming at further improving device efficiency, color quality of emission light, and device lifetime. This review focuses on recent efforts of synthesis and device performance of small molecules, oligomers and polymers for blue emission of organic electroluminescent devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterisation of 2,5-bis(5′-hexyl-[2,2′- bithiophen]-5-yl)pyridine (Th4PY) and its use as a blue emitter in organic light emitting diodes (OLEDs) is reported. Th4PY was synthesised in high yield using a straightforward Suzuki coupling route with commercially available starting materials. As Th4PY is both soluble and has low molecular weight, blue OLEDs were fabricated using both spin-coating and vacuum deposition thin film processing techniques to study the effect of processing on device performance. OLED devices using a spin-coated layer consisting of 4′,4′′- tris(N-carbazolyl)triphenylamine (TCTA) and 2-(4-biphenylyl)-5-(4-tert- butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix together with Th4PY as emitter exhibited highly efficient sky-blue emission with a low turn-on voltage of 3V, a maximum brightness close to 15000cdm-2 at 8V, and a maximum luminous efficiency of 7.4cdA -1 (6.3lmW -1) with CIE coordinates of x≤0.212, y≤0.320. The device performance characteristics are compared using various matrices and processing techniques. The promising sky-blue OLED performance, solution processability, and ambient stability make Th4PY a promising blue emitter for application in OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterization of solution processable donor-acceptor-donor (D-A-D) based conjugated molecules with varying ratios of thiophene as donor (D) and benzothiadiazole as acceptor (A) are reported. Optical, electrochemical, thermal, morphological and organic thin film transistor (OTFT) device properties of these materials were investigated. The thermal and polarized optical microscope analysis indicates that the materials having higher D/A ratios exhibit both liquid crystalline (LC) and OTFT behavior. AFM analysis of the materials having D/A ratios of 3 and 4 (3T1B and 4T1B) show well ordered structures, resulting from strong π-π interchain interactions compared to the other molecules in this study. A XRD patterns for 3T1B and 4T1B thin films also shows high crystalline ordering. Solution processed OTFTs of 3T1B and 4T1B have shown un-optimized charge carrier mobilities of 2 × 10 -2 cm 2 V -1 s -1 and 4 × 10 -3 cm 2 V -1 s -1, respectively on bare Si/SiO 2 substrate.