961 resultados para Markov chain Monte Carlo methods
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Resumo:
All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.
Resumo:
We examined three different algorithms used in diffusion Monte Carlo (DMC) to study their precisions and accuracies in predicting properties of isolated atoms, which are H atom ground state, Be atom ground state and H atom first excited state. All three algorithms — basic DMC, minimal stochastic reconfiguration DMC, and pure DMC, each with future-walking, are successfully impletmented in ground state energy and simple moments calculations with satisfactory results. Pure diffusion Monte Carlo with future-walking algorithm is proven to be the simplest approach with the least variance. Polarizabilities for Be atom ground state and H atom first excited state are not satisfactorily estimated in the infinitesimal differentiation approach. Likewise, an approach using the finite field approximation with an unperturbed wavefunction for the latter system also fails. However, accurate estimations for the a-polarizabilities are obtained by using wavefunctions that come from the time-independent perturbation theory. This suggests the flaw in our approach to polarizability estimation for these difficult cases rests with our having assumed the trial function is unaffected by infinitesimal perturbations in the Hamiltonian.
Resumo:
Optimization of wave functions in quantum Monte Carlo is a difficult task because the statistical uncertainty inherent to the technique makes the absolute determination of the global minimum difficult. To optimize these wave functions we generate a large number of possible minima using many independently generated Monte Carlo ensembles and perform a conjugate gradient optimization. Then we construct histograms of the resulting nominally optimal parameter sets and "filter" them to identify which parameter sets "go together" to generate a local minimum. We follow with correlated-sampling verification runs to find the global minimum. We illustrate this technique for variance and variational energy optimization for a variety of wave functions for small systellls. For such optimized wave functions we calculate the variational energy and variance as well as various non-differential properties. The optimizations are either on par with or superior to determinations in the literature. Furthermore, we show that this technique is sufficiently robust that for molecules one may determine the optimal geometry at tIle same time as one optimizes the variational energy.
Resumo:
Monte Carlo Simulations were carried out using a nearest neighbour ferromagnetic XYmodel, on both 2-D and 3-D quasi-periodic lattices. In the case of 2-D, both the unfrustrated and frustrated XV-model were studied. For the unfrustrated 2-D XV-model, we have examined the magnetization, specific heat, linear susceptibility, helicity modulus and the derivative of the helicity modulus with respect to inverse temperature. The behaviour of all these quatities point to a Kosterlitz-Thouless transition occuring in temperature range Te == (1.0 -1.05) JlkB and with critical exponents that are consistent with previous results (obtained for crystalline lattices) . However, in the frustrated case, analysis of the spin glass susceptibility and EdwardsAnderson order parameter, in addition to the magnetization, specific heat and linear susceptibility, support a spin glass transition. In the case where the 'thin' rhombus is fully frustrated, a freezing transition occurs at Tf == 0.137 JlkB , which contradicts previous work suggesting the critical dimension of spin glasses to be de > 2 . In the 3-D systems, examination of the magnetization, specific heat and linear susceptibility reveal a conventional second order phase transition. Through a cumulant analysis and finite size scaling, a critical temperature of Te == (2.292 ± 0.003) JI kB and critical exponents of 0:' == 0.03 ± 0.03, f3 == 0.30 ± 0.01 and I == 1.31 ± 0.02 have been obtained.
Resumo:
In Part I, theoretical derivations for Variational Monte Carlo calculations are compared with results from a numerical calculation of He; both indicate that minimization of the ratio estimate of Evar , denoted EMC ' provides different optimal variational parameters than does minimization of the variance of E MC • Similar derivations for Diffusion Monte Carlo calculations provide a theoretical justification for empirical observations made by other workers. In Part II, Importance sampling in prolate spheroidal coordinates allows Monte Carlo calculations to be made of E for the vdW molecule var He2' using a simplifying partitioning of the Hamiltonian and both an HF-SCF and an explicitly correlated wavefunction. Improvements are suggested which would permit the extension of the computational precision to the point where an estimate of the interaction energy could be made~
Resumo:
Our objective is to develop a diffusion Monte Carlo (DMC) algorithm to estimate the exact expectation values, ($o|^|^o), of multiplicative operators, such as polarizabilities and high-order hyperpolarizabilities, for isolated atoms and molecules. The existing forward-walking pure diffusion Monte Carlo (FW-PDMC) algorithm which attempts this has a serious bias. On the other hand, the DMC algorithm with minimal stochastic reconfiguration provides unbiased estimates of the energies, but the expectation values ($o|^|^) are contaminated by ^, an user specified, approximate wave function, when A does not commute with the Hamiltonian. We modified the latter algorithm to obtain the exact expectation values for these operators, while at the same time eliminating the bias. To compare the efficiency of FW-PDMC and the modified DMC algorithms we calculated simple properties of the H atom, such as various functions of coordinates and polarizabilities. Using three non-exact wave functions, one of moderate quality and the others very crude, in each case the results are within statistical error of the exact values.
Resumo:
Rapport de recherche
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.
Resumo:
Notre progiciel PoweR vise à faciliter l'obtention ou la vérification des études empiriques de puissance pour les tests d'ajustement. En tant que tel, il peut être considéré comme un outil de calcul de recherche reproductible, car il devient très facile à reproduire (ou détecter les erreurs) des résultats de simulation déjà publiés dans la littérature. En utilisant notre progiciel, il devient facile de concevoir de nouvelles études de simulation. Les valeurs critiques et puissances de nombreuses statistiques de tests sous une grande variété de distributions alternatives sont obtenues très rapidement et avec précision en utilisant un C/C++ et R environnement. On peut même compter sur le progiciel snow de R pour le calcul parallèle, en utilisant un processeur multicœur. Les résultats peuvent être affichés en utilisant des tables latex ou des graphiques spécialisés, qui peuvent être incorporés directement dans vos publications. Ce document donne un aperçu des principaux objectifs et les principes de conception ainsi que les stratégies d'adaptation et d'extension.
Resumo:
En radiothérapie, la tomodensitométrie (CT) fournit l’information anatomique du patient utile au calcul de dose durant la planification de traitement. Afin de considérer la composition hétérogène des tissus, des techniques de calcul telles que la méthode Monte Carlo sont nécessaires pour calculer la dose de manière exacte. L’importation des images CT dans un tel calcul exige que chaque voxel exprimé en unité Hounsfield (HU) soit converti en une valeur physique telle que la densité électronique (ED). Cette conversion est habituellement effectuée à l’aide d’une courbe d’étalonnage HU-ED. Une anomalie ou artefact qui apparaît dans une image CT avant l’étalonnage est susceptible d’assigner un mauvais tissu à un voxel. Ces erreurs peuvent causer une perte cruciale de fiabilité du calcul de dose. Ce travail vise à attribuer une valeur exacte aux voxels d’images CT afin d’assurer la fiabilité des calculs de dose durant la planification de traitement en radiothérapie. Pour y parvenir, une étude est réalisée sur les artefacts qui sont reproduits par simulation Monte Carlo. Pour réduire le temps de calcul, les simulations sont parallélisées et transposées sur un superordinateur. Une étude de sensibilité des nombres HU en présence d’artefacts est ensuite réalisée par une analyse statistique des histogrammes. À l’origine de nombreux artefacts, le durcissement de faisceau est étudié davantage. Une revue sur l’état de l’art en matière de correction du durcissement de faisceau est présentée suivi d’une démonstration explicite d’une correction empirique.