857 resultados para Markov Decision Process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic models based on Markov birth processes are constructed to describe the process of invasion of a fly larva by entomopathogenic nematodes. Various forms for the birth (invasion) rates are proposed. These models are then fitted to data sets describing the observed numbers of nematodes that have invaded a fly larval after a fixed period of time. Non-linear birthrates are required to achieve good fits to these data, with their precise form leading to different patterns of invasion being identified for three populations of nematodes considered. One of these (Nemasys) showed the greatest propensity for invasion. This form of modelling may be useful more generally for analysing data that show variation which is different from that expected from a binomial distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been many models developed by scientists to assist decision-makers in making socio-economic and environmental decisions. It is now recognised that there is a shift in the dominant paradigm to making decisions with stakeholders, rather than making decisions for stakeholders. Our paper investigates two case studies where group model building has been undertaken for maintaining biodiversity in Australia. The first case study focuses on preservation and management of green spaces and biodiversity in metropolitan Melbourne under the umbrella of the Melbourne 2030 planning strategy. A geographical information system is used to collate a number of spatial datasets encompassing a range of cultural and natural assets data layers including: existing open spaces, waterways, threatened fauna and flora, ecological vegetation covers, registered cultural heritage sites, and existing land parcel zoning. Group model building is incorporated into the study through eliciting weightings and ratings of importance for each datasets from urban planners to formulate different urban green system scenarios. The second case study focuses on modelling ecoregions from spatial datasets for the state of Queensland. The modelling combines collaborative expert knowledge and a vast amount of environmental data to build biogeographical classifications of regions. An information elicitation process is used to capture expert knowledge of ecoregions as geographical descriptions, and to transform this into prior probability distributions that characterise regions in terms of environmental variables. This prior information is combined with measured data on the environmental variables within a Bayesian modelling technique to produce the final classified regions. We describe how linked views between descriptive information, mapping and statistical plots are used to decide upon representative regions that satisfy a number of criteria for biodiversity and conservation. This paper discusses the advantages and problems encountered when undertaking group model building. Future research will extend the group model building approach to include interested individuals and community groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper consides the problem of extracting the relationships between two time series in a non-linear non-stationary environment with Hidden Markov Models (HMMs). We describe an algorithm which is capable of identifying associations between variables. The method is applied both to synthetic data and real data. We show that HMMs are capable of modelling the oil drilling process and that they outperform existing methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models to identify the lag (or delay) between different variables for such data. Adopting an information-theoretic approach, we develop a procedure for training HMMs to maximise the mutual information (MMI) between delayed time series. The method is used to model the oil drilling process. We show that cross-correlation gives no information and that the MMI approach outperforms maximum likelihood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventionally, oil pipeline projects are evaluated thoroughly by the owner before investment decision is made using market, technical and financial analysis sequentially. The market analysis determines pipelines throughput and supply and demand points. Subsequent, technical analysis identifies technological options and economic and financial analysis then derives the least cost option among all technically feasible options. The subsequent impact assessment tries to justify the selected option by addressing environmental and social issues. The impact assessment often suggests alternative sites, technologies, and/or implementation methodology, necessitating revision of technical and financial analysis. This study addresses these issues via an integrated project evaluation and selection model. The model uses analytic hierarchy process, a multiple-attribute decision-making technique. The effectiveness of the model has been demonstrated through a case application on cross-country petroleum pipeline project in India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical, and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again until the statutory regulatory authority approves the project. Moreover, project analysis through the above process often results in suboptimal projects as financial analysis may eliminate better options as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select an optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2008, IGI Global.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective management of projects is becoming increasingly important for any type of organization to remain competitive in today’s dynamic business environment due to pressure of globalization. The use of benchmarking is widening as a technique for supporting project management. Benchmarking can be described as the search for the best practices, leading to the superior performance of an organization. However, effectiveness of benchmarking depends on the use of tools for collecting and analyzing information and deriving subsequent improvement projects. This study demonstrates how analytic hierarchy process (AHP), a multiple attribute decision-making technique, can be used for benchmarking project management practices. The entire methodology has been applied to benchmark project management practice of Caribbean public sector organizations with organizations in the Indian petroleum sector, organizations in the infrastructure sector of Thailand and the UK. This study demonstrates the effectiveness of a proposed benchmarking model using AHP, determines problems and issues of Caribbean project management in the public sector and suggests improvement measures for effective project management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selection of a power market structure from the available alternatives is an important activity within an overall power sector reform programme. The evaluation criteria for selection are both subjective as well as objective in nature and the selection of alternatives is characterised by their conflicting nature. This study demonstrates a methodology for power market structure selection using the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to model the selection methodology with the active participation of relevant stakeholders in a workshop environment. The methodology is applied to a hypothetical case of a State Electricity Board reform in India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To develop a model for the global performance measurement of intensive care units (ICUs) and to apply that model to compare the services for quality improvement. Materials and Methods: Analytic hierarchy process, a multiple-attribute decision-making technique, is used in this study to evolve such a model. The steps consisted of identifying the critical success factors for the best performance of an ICU, identifying subfactors that influence the critical factors, comparing them pairwise, deriving their relative importance and ratings, and calculating the cumulative performance according to the attributes of a given ICU. Every step in the model was derived by group discussions, brainstorming, and consensus among intensivists. Results: The model was applied to 3 ICUs, 1 each in Barbados, Trinidad, and India in tertiary care teaching hospitals of similar setting. The cumulative performance rating of the Barbados ICU was 1.17 when compared with that of Trinidad and Indian ICU, which were 0.82 and 0.75, respectively, showing that the Trinidad and Indian ICUs performed 70% and 64% with respect to Barbados ICU. The model also enabled identifying specific areas where the ICUs did not perform well, which helped to improvise those areas. Conclusions: Analytic hierarchy process is a very useful model to measure the global performance of an ICU. © 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional project management techniques are not always sufficient to ensure time, cost and quality achievement of large-scale construction projects due to complexity in planning, design and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in government policies and regulations, unforeseen inflation, underestimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk management throughout the project's life cycle. However, the effectiveness of risk management depends on the technique through which the effects of risk factors are analysed/quantified. This study proposes the Analytic Hierarchy Process (AHP), a multiple attribute decision making technique, as a tool for risk analysis because it can handle subjective as well as objective factors in a decision model that are conflicting in nature. This provides a decision support system (DSS) to project management for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and a competitive business environment. The whole methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petroleum pipelines are the nervous system of the oil industry, as this transports crude oil from sources to refineries and petroleum products from refineries to demand points. Therefore, the efficient operation of these pipelines determines the effectiveness of the entire business. Pipeline route selection plays a major role when designing an effective pipeline system, as the health of the pipeline depends on its terrain. The present practice of route selection for petroleum pipelines is governed by factors such as the shortest distance, constructability, minimal effects on the environment, and approachability. Although this reduces capital expenditure, it often proves to be uneconomical when life cycle costing is considered. This study presents a route selection model with the application of an Analytic Hierarchy Process (AHP), a multiple attribute decision making technique. AHP considers all the above factors along with the operability and maintainability factors interactively. This system has been demonstrated here through a case study of pipeline route selection, from an Indian perspective. A cost-benefit comparison of the shortest route (conventionally selected) and optimal route establishes the effectiveness of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – To investigate the role of simulation in the introduction of technology in a continuous operations process. Design/methodology/approach – A case-based research method was chosen with the aim to provide an exemplar of practice and test the proposition that the use of simulation can improve the implementation and running of conveyor systems in continuous process facilities. Findings – The research determines the optimum rate of re-introduction of inventory to a conveyor system generated during a breakdown event. Research limitations/implications – More case studies are required demonstrating the operational and strategic benefits that can be gained by using simulation to assess technology in organisations. Practical implications – A practical outcome of the study was the implementation of a policy for the manual re-introduction of inventory on a conveyor line after a breakdown event had occurred. Originality/value – The paper presents a novel example of the use of simulation to estimate the re-introduction rate of inventory after a breakdown event on a conveyor line. The paper highlights how by addressing this operational issue, ahead of implementation, the likelihood of the success of the strategic decision to acquire the technology can be improved.