997 resultados para MUTATIONS CAUSE NOONAN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le système vasculaire lymphatique est le second réseau de vaisseaux du corps humain. Sa fonction principale est de retourner le fluide interstitiel excédentaire au système cardiovasculaire. Il est également impliqué dans la défense immunitaire de l'organisme, ainsi que dans le transport initial des graisses alimentaires. De multiples pathologies sont associées au dysfonctionnement du développement vasculaire lymphatique, dont les lymphoedèmes. Un des gènes clés dans le contrôle de l'étape de maturation du système lymphatique est le facteur de transcription FOXC2. De précédentes études utilisant des modèles génétiques mutins déficients en Foxc2 ont montré son rôle dans la régulation du processus de spécification des vaisseaux lymphatiques en capillaires versus vaisseaux collecteurs, ainsi que dans la formation des valves lymphatiques. Chez l'homme, les mutations dans le gène FOXC2 causent le syndrome lymphoedème- distichiasis. Dans ce travail, nous avons étudié les mécanismes moléculaires qui régulent l'expression et l'activité de FOXC2 dans les vaisseaux lymphatiques. Nous avons découvert que la fonction de FOXC2 est régulée par phosphorylation de la protéine, qui détermine son activité transcriptionnelle au niveau génomique, jouant ainsi un rôle important dans le développement vasculaire in vivo. Les vaisseaux lymphatiques sont soumis à des forces de stress générées par le flux de la lymphe (FSS). Nous avons donc testé l'hypothèse que ces forces contribuent à la morphogenèse et à l'organisation des vaisseaux lymphatiques. In vitro, les cellules endothéliales lymphatiques répondent aux forces mécaniques, qui induisent l'expression de FOXC2, activent la voie de signalisation Ca2+/calcineurin/NFATcl et régulent l'expression de la protéine de jonction gap connexin37. Nous avons également montré que le stress de flux mécanique, FOXC2, calcineurin/NFATcl et connexin37 coopèrent dans le contrôle de la maturation des vaisseaux lymphatiques in vivo. En dernier lieu, nous avons cherché à identifier les récepteurs de surface cellulaires permettant le transfert du signal de stress mécanique qui induit l'expression de FOXC2. Nous présentons ici des données préliminaires, qui suggèrent le rôle de la voie de signalisation TGFß ainsi que l'implication des jonctions adhérentes dans ce processus. En conclusion, la présente étude met en lumière les mécanismes de l'activité de FOXC2 dans les cellules endothéliales lymphatiques et l'importance du rôle des forces mécaniques de flux dans le contrôle de son l'expression, ainsi que dans le développement et la fonction du système vasculaire lymphatique. - The lymphatic vascular system is a second vascular system of human body. Its main fonction is to transfer excess interstitial fluid back to cardiovascular system. In addition, it is involved in immune defense and responsible for the uptake of dietary fat. A number of pathologies called lymphedemas are associated with lymphatic vascular system dysfunction. Hereditary lymphedemas are caused by mutations in genes controlling lymphatic vascular development. One of the key genes responsible for lymphatic vascular maturation is forkhead transcription factor FOXC2. Previous studies of Foxc2 knockout mice showed that Foxc2 controls the process of lymphatic capillary versus collecting vessel fate specification and formation of lymphatic valves. Importantly, mutations in FOXC2 cause human lymphedema-distichiasis syndrome. In this work we investigated the molecular mechanisms regulating the expression and activity of FOXC2 in lymphatic vasculature. We discovered that FOXC2 function is regulated by phosphorylation. We describe how phosphorylation controls FOXC2 transcriptional activity on a genome-wide level and show that FOXC2 phosphorylation plays an important role in vascular development in vivo. Lymphatic vessels are subjected to fluid shear stress (FSS). Therefore we investigated whether mechanical forces contribute to lymphatic vascular patterning and morphogenesis. We found that FSS induces the expression of FOXC2, activates Ca2+/calcineurin/NFATcl signaling and induces the expression of gap junction protein connexin37 in lymphatic endothelial cells in vitro. Importantly, we were able to show that shear stress, FOXC2, calcineurin/NFATcl and connexin37, control maturation of lymphatic vessels in vivo. Finally, we searched for cell surface receptors that mediate the induction of FOXC2 by shear stress, and we present some preliminary data, suggesting the role of TGF-beta signaling and adherens junctions in this process. In conclusion, the present study sheds light on the mechanisms of FOXC2 activity and suggests an important role of mechanical forces in controlling FOXC2 expression as well as lymphatic system development and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY : Human-induced habitat fragmentation constitutes a major threat to biodiversity. Small and isolated populations suffer from increased stochasticity and from limited rescue effects. These two factors may be sufficient to cause local extinctions but fragmentation induces some genetic consequences that can also contribute significantly to extinction risks. Increased genetic drift reduces the effectiveness of selection against deleterious mutations, leading to their progressive accumulation. Drift also decreases both the standing genetic variation and the rate of fixation of beneficial mutations, limiting the evolutionary potential of isolated populations. Demography and genetics further interact and feed back on each other, progressively driving fragmented populations into "extinction vortices". The aim of the thesis was to better understand the processes occurring in fragmented populations. For this, I combined simulation studies and empirical data from three species that live in structured habitats. Chapter 1 and 2 investigate the demography of two shrew species in fragmented habitats. I showed that connectivity and habitat quality strongly affect the demography of the greater white-tooted shrew, although demographic stochasticity was extremely high. I also demonstrated that habitat fragmentation is one of the leading factors allowing the local coexistence of two competing shrew species. Chapter 3 and 4 focus on measuring connectivity in fragmented populations based on genetic data. In particular, I showed that genetic data can be used to detect the landscape elements impeding dispersal. In Chapter 5 that deals with the accumulation of deleterious mutations in fragmented populations, I demonstrated that mutation accumulation, as well a time to extinction, can be predicted from simple demographic and genetic measures. In the last two chapters, I monitored individual reproductive success in an isolated tree frogs population. These data allowed quantifying the effective population size, a measure closely linked to population evolutionary potential. To conclude, this thesis brings some new insights into the processes occurring in fragmented populations, and I hope it will contribute to the improvement of the management and conservation of fragmented populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inactivating mutations of the Ten-Eleven Translocation 2 (TET2) gene were first identified in myeloid malignancies and more recently in peripheral T-cell lymphomas (PTCLs). In the present study, we investigated the presence of TET2 coding sequence mutations and their clinical relevance in a large cohort of 190 PTCL patients. TET2 mutations were identified in 40 of 86 (47%) cases of angioimmunoblastic T-cell lymphoma (AITL) and in 22 of 58 (38%) cases of peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), but were absent in all other PTCL entities, with the exception of 2 of 10 cases of enteropathy-associated T-cell lymphoma. Among PTCL-NOS, a heterogeneous group of lymphoma-comprising cases likely to derive from Th follicular (T(FH)) cells similarly to AITL, TET2 mutations were more frequent when PTCL-NOS expressed T(FH) markers and/or had features reminiscent of AITL (58% vs 24%, P = .01). In the AITL and PTCL-NOS subgroups, TET2 mutations were associated with advanced-stage disease, thrombocytopenia, high International Prognostic Index scores, and a shorter progression-free survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is ample epidemiological and anecdotal evidence that a PFO increases the risk of stroke both in young and elderly patients, although only in a modest way: PFOs are more prevalent in patients with cryptogenic (unexplained) stroke than in healthy subjects, and are more prevalent in cryptogenic stroke than in strokes of other causes. Furthermore, multiple case series confirm an association of paradoxical embolism across a PFO in patients with deep vein thrombosis and/or pulmonary emboli.2. Is stroke recurrence risk in PFO-patients really not elevated when compared to PFO-free patients, as suggested by traditional observational studies? This finding is an epidemiological artifact called "the paradox of recurrence risk research" (Dahabreh & Kent, JAMA 2011) and is due to one (minor) risk factor, such as PFO, being wiped out by other, stronger risk factors in the control population.3. Having identified PFO as a risk factor for a first stroke and probably also for recurrences, we have to treat it, because treating risk factors always has paid off. No one would nowadays question the aggressive treatment of other risk factors of stroke such as hypertension, atrial fibrillation, smoking, or hyperlipidemia.4. In order to be effective, the preventive treatment has to control the risk factor (i.e. close effectively the PFO), and has to have little or no side effects. Both these conditions are now fulfilled thanks to increasing expertise of cardiologists with technically advanced closure devices and solid back up by multidisciplinary stroke teams.5. Closing a PFO does not dispense us from treating other stroke risk factors aggressively, given that these are cumulative with PFO.6. The most frequent reason why patients have a stroke recurrence after PFO closure is not that closure is ineffective, but that the initial stroke etiology is insufficiently investigated and not PFO related, and that the recurrence is due to another mechanism because of poor risk factor control.7. Similarly, the randomized CLOSURE study was negative because a) patients were included who had a low chance that their initial event was due to the PFO, b) patients were selected with a low chance that a PFO-related recurrence would occur, c) there was an unacceptable high rate of closure-related side effects, and d) the number of randomized patients was too small for a prevention trial.8. It is only a question of time until a sufficiently large randomized clinical trial with true PFO-related stroke patients and a high PFO-related recurrence risk will be performed and show the effectiveness of this closure9. PFO being a rather modest risk factor for stroke does not mean we should prevent our patients from getting the best available prevention by the best physicians in the best stroke centers Therefore, a PFO-closure performed by an excellent cardiologist following the recommendation of an expert neurovascular specialist after a thorough workup in a leading stroke center is one of the most effective stroke prevention treatments available in 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The epithelial sodium channel (ENaC) is composed of three homologous subunits: alpha, beta, and gamma. Mutations in the Scnn1b and Scnn1g genes, which encode the beta and the gamma subunits of ENaC, cause a severe form of hypertension (Liddle syndrome). The contribution of genetic variants within the Scnn1a gene, which codes for the alpha subunit, has not been investigated. METHODS: We screened for mutations in the COOH termini of the alpha and beta subunits of ENaC. Blood from 184 individuals from 31 families participating in a study on the genetics of hypertension were analyzed. Exons 13 of Scnn1a and Scnn1b, which encode the second transmembrane segment and the COOH termini of alpha- and beta-ENaC, respectively, were amplified from pooled DNA samples of members of each family by PCR. Constant denaturant capillary electrophoresis (CDCE) was used to detect mutations in PCR products of the pooled DNA samples. RESULTS: The detection limit of CDCE for ENaC variants was 1%, indicating that all members of any family or up to 100 individuals can be analyzed in one CDCE run. CDCE profiles of the COOH terminus of alpha-ENaC in pooled family members showed that the 31 families belonged to four groups and identified families with genetic variants. Using this approach, we analyzed 31 rather than 184 samples. Individual CDCE analysis of members from families with different pooled CDCE profiles revealed five genotypes containing 1853G-->T and 1987A-->G polymorphisms. The presence of the mutations was confirmed by DNA sequencing. For the COOH terminus of beta-ENaC, only one family showed a different CDCE profile. Two members of this family (n = 5) were heterozygous at 1781C-->T (T594M). CONCLUSION: CDCE rapidly detects point mutations in these candidate disease genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'introduction des technologies de séquençage de nouvelle génération est en vue de révolutionner la médecine moderne. L'impact de ces nouveaux outils a déjà contribué à la découverte de nouveaux gènes et de voies cellulaires impliqués dans la pathologie de maladies génétiques rares ou communes. En revanche, l'énorme quantité de données générées par ces systèmes ainsi que la complexité des analyses bioinformatiques nécessaires, engendre un goulet d'étranglement pour résoudre les cas les plus difficiles. L'objectif de cette thèse a été d'identifier les causes génétiques de deux maladies héréditaires utilisant ces nouvelles techniques de séquençage, couplées à des technologies d'enrichissement de gènes. Dans ce cadre, nous avons développé notre propre méthode de travail (pipeline) pour l'alignement des fragments de séquence (reads). Suite à l'identification de gènes, nous avons réalisé une analyse fonctionnelle pour élucider leur rôle dans la maladie. Dans un premier temps, nous avons étudié et identifié des mutations impliquées dans une forme récessive de la rétinite pigmentaire qui est à ce jour la dégénérescence rétinienne héréditaire la plus fréquente. En particulier, nous avons constaté que des mutations faux-sens dans le gène FAM161A étaient la cause de la rétinite pigmentaire préalablement associé avec le locus RP28. De plus, nous avons démontré que ce gène avait des fonctions au niveau du cil du photorécepteur, complétant le large spectre des cilliopathies rétiniennes héréditaires. Dans un second temps, nous avons exploré la possibilité qu'un syndrome, relativement fréquent en pédiatrie de fièvre récurrente, appelé PFAPA (acronyme de fièvre périodique avec adénite stomatite, pharyngite et cervical aphteuse) puisse avoir une origine génétique. L'étiologie de cette maladie n'étant pas claire, nous avons tenté d'identifier le spectre génétique de patients PFAPA. Comme nous n'avons pas pu mettre à jour un nouveau gène unique muté et responsable de la maladie chez tous les individus dépistés, il semblerait qu'un modèle génétique plus complexe suggérant l'implication de plusieurs gènes dans la pathologie ait été identifié chez les patients touchés. Ces gènes seraient notamment impliqués dans des processus liés à l'inflammation ce qui élargirait l'impact de ces études à d'autres maladies auto-inflammatoires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare and lethal developmental disorder of the lung defined by a constellation of characteristic histopathological features. Nonpulmonary anomalies involving organs of gastrointestinal, cardiovascular, and genitourinary systems have been identified in approximately 80% of patients with ACD/MPV. We have collected DNA and pathological samples from more than 90 infants with ACD/MPV and their family members. Since the publication of our initial report of four point mutations and 10 deletions, we have identified an additional 38 novel nonsynonymous mutations of FOXF1 (nine nonsense, seven frameshift, one inframe deletion, 20 missense, and one no stop). This report represents an up to date list of all known FOXF1 mutations to the best of our knowledge. Majority of the cases are sporadic. We report four familial cases of which three show maternal inheritance, consistent with paternal imprinting of the gene. Twenty five mutations (60%) are located within the putative DNA-binding domain, indicating its plausible role in FOXF1 function. Five mutations map to the second exon. We identified two additional genic and eight genomic deletions upstream to FOXF1. These results corroborate and extend our previous observations and further establish involvement of FOXF1 in ACD/MPV and lung organogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in α, β, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED.