906 resultados para MODIFIED GOLD NANOPARTICLES
Resumo:
Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4(+) T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4(+) T cells, and induce cytokines. The decreased antigen processing and CD4(+) T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.
Resumo:
A longitudinal study of malaria vectors aiming to describe the intensity of transmission was carried out in five villages of Southern Venezuela between January 1999-April 2000. The man-biting, sporozoite and entomological inoculation rates (EIR) were calculated based on 121 all-night collections of anophelines landing on humans, CDC light traps and ultra violet up-draft traps. A total of 6,027 female mosquitoes representing seven species were collected. The most abundant species were Anopheles marajoara Galvão & Damasceno (56.7%) and Anopheles darlingi Root (33%), which together accounted for 89.7% of the total anophelines collected. The mean biting rate for An. marajoara was 1.27 (SD + 0.81); it was 0.74 (SD + 0.91) for An. darlingand 0.11 (SD + 0.10) for Anopheles neomaculipalpus Curry and the overall biting rate was 2.29 (SD + 1.06). A total of 5,886 mosquitoes collected by all three methods were assayed by ELISA and 28 pools, equivalent to 28 mosquitoes, yielded positive results for Plasmodium spp. CS protein. An. neomaculipalpus had the highest sporozoite rate 0.84% (3/356), followed by An. darlingi 0.82% (16/1,948) and An. marajoara 0.27% (9/3,332). The overall sporozoite rate was 0.48% (28/5,886). The rates of infection by Plasmodium species in mosquitoes were 0.37% (22/5,886) for Plasmodium vivax(Grassi & Feletti) and 0.10% (6/5,886) for Plasmodium falciparum (Welch). The estimated overall EIR for An. darling was 2.21 infective bites/person/year, 1.25 for An. marajoara and 0.34 for An. neomaculipalpus. The overall EIR was four infective bites/person/year. The biting rate, the sporozoite rate and the EIR are too low to be indicators of the efficacy of control campaigns in this area.
Resumo:
Introduction. Partial nephrectomy (PN) is playing an increasingly important role in localized renal cell carcinoma (RCC) as a true alternative to radical nephrectomy. With the greater experience and expertise of surgical teams, it has become an alternative to radical nephrectomy in young patients when the tumor diameter is 4 cm or less in almost all hospitals since cancer-specific survival outcomes are similar to those obtained with radical nephrectomy. Materials and Methods. The authors comment on their own experience and review the literature, reporting current indications and outcomes including complications. The surgical technique of open partial nephrectomy is outlined. Conclusions. Nowadays, open PN is the gold standard technique to treat small renal masses, and all nonablative techniques must pass the test of time to be compared to PN. It is not ethical for patients to undergo radical surgery just because the urologists involved do not have adequate experience with PN. Patients should be involved in the final treatment decision and, when appropriate, referred to specialized centers with experience in open or laparoscopic partial nephrectomies
Resumo:
This work aimed to develop a new therapeutic approach to increase the efficacy of 5-fluorouracil (5-FU) in the treatment of advanced or recurrent colon cancer. 5-FU-loaded biodegradable poly(ε-caprolactone) nanoparticles (PCL NPs) were combined with the cytotoxic suicide gene E (combined therapy). The SW480 human cancer cell line was used to assay the combined therapeutic strategy. This cell line was established from a primary adenocarcinoma of the colon and is characterized by an intrinsically high resistance to apoptosis that correlates with its resistance to 5-FU. 5-FU was absorbed into the matrix of the PCL NPs during synthesis using the interfacial polymer disposition method. The antitumor activity of gene E from the phage ϕX174 was tested by generating a stable clone (SW480/12/E). In addition, the localization of E protein and its activity in mitochondria were analyzed. We found that the incorporation of 5-FU into PCL NPs (which show no cytotoxicity alone), significantly improved the drug's anticancer activity, reducing the proliferation rate of colon cancer cells by up to 40-fold when compared with the nonincorporated drug alone. Furthermore, E gene expression sensitized colon cancer cells to the cytotoxic action of the 5-FU-based nanomedicine. Our findings demonstrate that despite the inherent resistance of SW480 to apoptosis, E gene activity is mediated by an apoptotic phenomenon that includes modulation of caspase-9 and caspase-3 expression and intense mitochondrial damage. Finally, a strongly synergistic antiproliferative effect was observed in colon cancer cells when E gene expression was combined with the activity of the 5-FU-loaded PCL NPs, thereby indicating the potential therapeutic value of the combined therapy.
Resumo:
The biocontrol strain CHA0 of Pseudomonas fluorescens produces small amounts of indole-3-acetic acid via the tryptophan side chain oxidase and the tryptophan transaminase pathways. A recombinant plasmid (pME3468) expressing the tryptophan monooxygenase pathway was introduced into strain CHA0; this resulted in elevated synthesis of indole-3-acetic acid in vitro, especially after addition of -tryptophan. In natural soil, strain CHA0/pME3468 increased fresh root weight of cucumber by 17-36%, compared to the effect of strain CHA0; root colonization was about 106 cells per g of root. However, both strains gave similar protection of cucumber against Pythium ultimum. In autoclaved soil, at 6×107 cells per g of root, strain CHA0 stimulated growth of roots and shoots, whereas strain CHA0/pME3468 caused root stunting and strong reduction of plant weight. These results are in agreement with the known effects of exogenous indole-3-acetic acid on plant roots and suggest that in the system examined, indole-3-acetic acid does not contribute to the biocontrol properties of strain CHA0.
Resumo:
A straightforward route is proposed for the multi-gram scale synthesis of heterobifunctional poly(ethylene glycol) (PEG) oligomers containing combination of triethyloxysilane extremity for surface modification of metal oxides and amino or azido active end groups for further functionalization. The suitability of these PEG derivatives to be conjugated to nanomaterials was shown by pegylation of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs), followed by functionalization with small peptide ligands for biomedical applications.
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.
Resumo:
A fluorimetric microassay that uses a redox dye to determine the viability of the flagellate Trichomonas vaginalis has been optimised to provide a more sensitive method to evaluate potential trichomonacidal compounds. Resazurin has been used in recent years to test drugs against different parasites, including trichomonadid protozoa; however, the reproducibility of these resazurin-based methods in our laboratory has been limited because the flagellate culture medium spontaneously reduces the resazurin. The objective of this work was to refine the fluorimetric microassay method previously developed by other research groups to reduce the fluorescence background generated by the media and increase the sensitivity of the screening assay. The experimental conditions, time of incubation, resazurin concentration and media used in the microtitre plates were adjusted. Different drug sensitivity studies against T. vaginalis were developed using the 5-nitroimidazole reference drugs, new 5-nitroindazolinones and 5-nitroindazole synthetic derivatives. Haemocytometer count results were compared with the resazurin assay using a 10% solution of 3 mM resazurin dissolved in phosphate buffered saline with glucose (1 mg/mL). The fluorimetric assay and the haemocytometer counts resulted in similar percentages of trichomonacidal activity in all the experiments, demonstrating that the fluorimetric microtitre assay has the necessary accuracy for high-throughput screening of new drugs against T. vaginalis.
Resumo:
Aquest projecte de doctorat és un treball interdisciplinari adreçat a l’obtenció de nous nanocompòsits (NCs) funcionals sintetitzats a partir de materials polimèrics bescanviadors d’ions que són modificats amb nanopartícules metàl•liques (NPMs) de diferent composició. Els materials desenvolupats s’avaluen en funció de dues possibles aplicacions: 1) com a catalitzadors de reaccions orgàniques d’interès actual (NCs basats en pal•ladi) i, 2) la seva dedicació a aplicacions bactericides en el tractament d’aigües domèstiques o industrials (NCs basats en plata). El desenvolupament de nanomaterials és de gran interès a l’actualitat donades les seves especials propietats, l’aprofitament de les quals és la força impulsora per a la fabricació de nous NCs. Les nanopartícules metàl•liques estabilitzades en polímer (Polymer Stabilized Metal Nanoparticles, PSNPM) s’han preparat mitjançant la tècnica in-situ de síntesi intermatricial (Inter-matrix synthesis, IMS) que consisteix en la càrrega seqüencial dels grups funcionals de les matrius polimèriques amb ions metàl•lics, i la seva posterior reducció química dins de la matriu polimèrica de bescanvi iònic. L’estabilització en matrius polimèriques evita l’agregació entre elles (self-aggreagtion), un dels principals problemes coneguts de les NPs. Pel desenvolupament d’aquesta metodologia, s’han emprat diferents tipus de matrius polimèriques de bescanvi iònic: membrana Sulfonated PolyEtherEtherKetone, SPEEK, així com fibres sintètiques basades en polypropilè amb diferents tipus de grups funcionals, que ens permeten el seu ús com a filtres en la desinfecció de solucions aquoses o com a material catalitzador. Durant el projecte s’ha anat avançant en l’optimització del material nanocomposite final per a les aplicacions d’interès, en quant activitat i funcionalitat de les nanopartícules i estabilitat del nanocomposite. Així, s’ha optimitzat la síntesi de NPs estabilitzades en resines de bescanvi iònic, realitzant un screening de diferents tipus de resines i la seva avaluació en aplicacions industrials d’interès.
Resumo:
The Mantoverde iron oxide copper-gold (IOCC) district, northern Chile, is known for its Cu production from supergene ores. Recently, exploration outlined an additional hypogene ore resource of 440 Mt with 0.56 percent Cu, and 0.12 g/t An. The hypogene sulfide mineralization occurs mainly as chalcopyrite and pyrite, typically in specularite or magnetite-cemented breccias and associated stockworks. The host rocks underwent variably intense K feldspar alteration, chloritization, sericitization, silicification, and/or carbonatization. A district scale Na(-Ca) alteration is absent. The IOCC mineralization in the district shows a strong tectonic control by northwest- to north-northwest-trending brittle structures. Large Cu sulfide-rich veins or Cu sulfide-cemented breccias are absent. Therefore, head grades of 4 percent Cu are an exception. There is a positive correlation between Cu and An grades. Gold is probably contained mostly in chalcopyrite and pyrite. Elevated concentrations of light rare-earth elements (LREE) occur locally but are attributed to redistribution of LREE within the deposits rather than to derivation from external sources. The Cu-Au ores in the Mantoverde district are low in and have relatively low contents in heavy metals that are potentially hazardous to the environment, such as As (avg 14 ppm), Hg (<5 ppm), or Cd (<0.2 ppm). The sulfur isotope ratios of chalcopyrite from the IOCC deposits lie between -5.6 and 8.9 per mil delta(34)S(VCDT). They show systematic variations within the district, which are interpreted to reflect relative distance to inferred fluid conduits and the level of deposition within the hydrothermal system. Most initial (87)Sr/(86)Sr values of altered volcanic rocks and hydrothermal calcite from the Mantoverde district are between 0.7031 and 0.7060 and are similar to those of the igneous rocks of the region. Lead isotope ratios of chalcopyrite are consistent with Pb (and by inference Cu) derived from Early Cretaceous magmatism. The sulfur, strontium, and lead isotope data of chalcopyrite, calcite gangue, or altered host rocks, respectively, are compatible with a genetic model that involves cooling of metal and sulfur-bearing magmatic-hydrothermal fluids that mix with meteoric waters or seawater at relatively shallow crustal levels. An additional exotic sulfur input is likely, though not required, for the copper mineralization. Apart from the IOCC. deposits, there are a number of smaller magnetite(-apatite) bodies in the district. These are geologically similar to the Cu-Au-bearing magnetite bodies, but are related to splays of the north-south-trending Atacama fault zone and differ in alteration and texture.
Resumo:
Purpose. This study was conducted to determine whether newer infrared or laser welding technologies created joints superior to traditional furnace or torch soldering methods of joining metals. It was designed to assess the mechanical resistance, the characteristics of the fractured surfaces, and the elemental diffusion of joints obtained by four different techniques: (1) preceramic soldering with a propane-oxygen torch, (2) postceramic soldering with a porcelain furnace, (3) preceramic and (4) postceramic soldering with an infrared heat source, and (5) laser welding. Material and methods. Mechanical resistance was determined by measuring the ultimate tensile strength of the joint and by determining their resistance to fatigue loading. Elemental diffusion to and from the joint was assessed with microprobe tracings. Scanning electron microscopy micrographs of the fractured surface were also obtained and evaluated. Results. Under monotonic tensile stress, three groups emerged: The laser welds were the strongest, the preceramic joints ranged second, and the postceramic joints were the weakest. Under fatigue stress, the order was as follows: first, the preceramic joints, and second, a group that comprised both postceramic joints and the laser welds. Inspection of the fractographs revealed several fracture modes but no consistent pattern emerged. Microprobe analyses demonstrated minor diffusion processes in the preceramic joints, whereas significant diffusion was observed in the postceramic joints. Clinical Implications. The mechanical resistance data conflicted as to the strength that could be expected of laser welded joints. On the basis of fatigue resistance of the joints, neither infrared solder joints nor laser welds were stronger than torch or furnace soldered joints.
Resumo:
A cohort of 123 adult contacts was followed for 18‐24 months (86 completed the follow-up) to compare conversion and reversion rates based on two serial measures of QuantiFERON (QFT) and tuberculin skin test (TST) (PPD from TUBERSOL, Aventis Pasteur, Canada) for diagnosing latent tuberculosis (TB) in household contacts of TB patients using conventional (C) and borderline zone (BZ) definitions. Questionnaires were used to obtain information regarding TB exposure, TB risk factors and socio-demographic data. QFT (IU/mL) conversion was defined as <0.35 to ≥0.35 (C) or <0.35 to >0.70 (BZ) and reversion was defined as ≥0.35 to <0.35 (C) or ≥0.35 to <0.20 (BZ); TST (mm) conversion was defined as <5 to ≥5 (C) or <5 to >10 (BZ) and reversion was defined as ≥5 to <5 (C). The QFT conversion and reversion rates were 10.5% and 7% with C and 8.1% and 4.7% with the BZ definitions, respectively. The TST rates were higher compared with QFT, especially with the C definitions (conversion 23.3%, reversion 9.3%). The QFT conversion and reversion rates were higher for TST ≥5; for TST, both rates were lower for QFT <0.35. No risk factors were associated with the probability of converting or reverting. The inconsistency and apparent randomness of serial testing is confusing and adds to the limitations of these tests and definitions to follow-up close TB contacts.
Resumo:
Gold-mining may play an important role in the maintenance of malaria worldwide. Gold-mining, mostly illegal, has significantly expanded in Colombia during the last decade in areas with limited health care and disease prevention. We report a descriptive study that was carried out to determine the malaria prevalence in gold-mining areas of Colombia, using data from the public health surveillance system (National Health Institute) during the period 2010-2013. Gold-mining was more prevalent in the departments of Antioquia, Córdoba, Bolívar, Chocó, Nariño, Cauca, and Valle, which contributed 89.3% (270,753 cases) of the national malaria incidence from 2010-2013 and 31.6% of malaria cases were from mining areas. Mining regions, such as El Bagre, Zaragoza, and Segovia, in Antioquia, Puerto Libertador and Montelíbano, in Córdoba, and Buenaventura, in Valle del Cauca, were the most endemic areas. The annual parasite index (API) correlated with gold production (R2 0.82, p < 0.0001); for every 100 kg of gold produced, the API increased by 0.54 cases per 1,000 inhabitants. Lack of malaria control activities, together with high migration and proliferation of mosquito breeding sites, contribute to malaria in gold-mining regions. Specific control activities must be introduced to control this significant source of malaria in Colombia.
Resumo:
The use of doxorubicin (DOX), one of the most effective antitumor molecules in the treatment of metastatic breast cancer, is limited by its low tumor selectivity and its severe side effects. Colloidal carriers based on biodegradable poly(butylcyanoacrylate) nanoparticles (PBCA NPs) may enhance DOX antitumor activity against breast cancer cells, thus allowing a reduction of the effective dose required for antitumor activity and consequently the level of associated toxicity. DOX loading onto PBCA NPs was investigated in this work via both drug entrapment and surface adsorption. Cytotoxicity assays with DOX-loaded NPs were performed in vitro using breast tumor cell lines (MCF-7 human and E0771 mouse cancer cells), and in vivo evaluating antitumor activity in immunocompetent C57BL/6 mice. The entrapment method yielded greater drug loading values and a controlled drug release profile. Neither in vitro nor in vivo cytotoxicity was observed for blank NPs. The 50% inhibitory concentration (IC50) of DOX-loaded PBCA NPs was significantly lower for MCF-7 and E0771 cancer cells (4 and 15 times, respectively) compared with free DOX. Furthermore, DOX-loaded PBCA NPs produced a tumor growth inhibition that was 40% greater than that observed with free DOX, thus reducing DOX toxicity during treatment. These results suggest that DOX-loaded PBCA NPs have great potential for improving the efficacy of DOX therapy against advanced breast cancers.