975 resultados para MODELS ANIMAL
Resumo:
The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO3-, Cl-, PO43-) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed tone-way ANOVA, p < 0.001) indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Peptides that induce and recall T-cell responses are called T-cell epitopes. T-cell epitopes may be useful in a subunit vaccine against malaria. Computer models that simulate peptide binding to MHC are useful for selecting candidate T-cell epitopes since they minimize the number of experiments required for their identification. We applied a combination of computational and immunological strategies to select candidate T-cell epitopes. A total of 86 experimental binding assays were performed in three rounds of identification of HLA-All binding peptides from the six preerythrocytic malaria antigens. Thirty-six peptides were experimentally confirmed as binders. We show that the cyclical refinement of the ANN models results in a significant improvement of the efficiency of identifying potential T-cell epitopes. (C) 2001 by Elsevier Science Inc.
Resumo:
Integrable Kondo impurities in two cases of one-dimensional q-deformed t-J models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
The majority of past and current individual-tree growth modelling methodologies have failed to characterise and incorporate structured stochastic components. Rather, they have relied on deterministic predictions or have added an unstructured random component to predictions. In particular, spatial stochastic structure has been neglected, despite being present in most applications of individual-tree growth models. Spatial stochastic structure (also called spatial dependence or spatial autocorrelation) eventuates when spatial influences such as competition and micro-site effects are not fully captured in models. Temporal stochastic structure (also called temporal dependence or temporal autocorrelation) eventuates when a sequence of measurements is taken on an individual-tree over time, and variables explaining temporal variation in these measurements are not included in the model. Nested stochastic structure eventuates when measurements are combined across sampling units and differences among the sampling units are not fully captured in the model. This review examines spatial, temporal, and nested stochastic structure and instances where each has been characterised in the forest biometry and statistical literature. Methodologies for incorporating stochastic structure in growth model estimation and prediction are described. Benefits from incorporation of stochastic structure include valid statistical inference, improved estimation efficiency, and more realistic and theoretically sound predictions. It is proposed in this review that individual-tree modelling methodologies need to characterise and include structured stochasticity. Possibilities for future research are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A number of mathematical models have been used to describe percutaneous absorption kinetics. In general, most of these models have used either diffusion-based or compartmental equations. The object of any mathematical model is to a) be able to represent the processes associated with absorption accurately, b) be able to describe/summarize experimental data with parametric equations or moments, and c) predict kinetics under varying conditions. However, in describing the processes involved, some developed models often suffer from being of too complex a form to be practically useful. In this chapter, we attempt to approach the issue of mathematical modeling in percutaneous absorption from four perspectives. These are to a) describe simple practical models, b) provide an overview of the more complex models, c) summarize some of the more important/useful models used to date, and d) examine sonic practical applications of the models. The range of processes involved in percutaneous absorption and considered in developing the mathematical models in this chapter is shown in Fig. 1. We initially address in vitro skin diffusion models and consider a) constant donor concentration and receptor conditions, b) the corresponding flux, donor, skin, and receptor amount-time profiles for solutions, and c) amount- and flux-time profiles when the donor phase is removed. More complex issues, such as finite-volume donor phase, finite-volume receptor phase, the presence of an efflux. rate constant at the membrane-receptor interphase, and two-layer diffusion, are then considered. We then look at specific models and issues concerned with a) release from topical products, b) use of compartmental models as alternatives to diffusion models, c) concentration-dependent absorption, d) modeling of skin metabolism, e) role of solute-skin-vehicle interactions, f) effects of vehicle loss, a) shunt transport, and h) in vivo diffusion, compartmental, physiological, and deconvolution models. We conclude by examining topics such as a) deep tissue penetration, b) pharmacodynamics, c) iontophoresis, d) sonophoresis, and e) pitfalls in modeling.
Resumo:
Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a gamma-law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.
Resumo:
Negative impacts of noise exposure on health and performance may result in part from learned helplessness, the syndrome of deficits typically produced by exposure to uncontrollable events. People may perceive environmental noise to be uncontrollable, and several effects of noise exposure appear to parallel learned helplessness deficits. In the present socioacoustic survey (N = 1,015), perceived control over aircraft noise correlated negatively with some effects of noise (though not others). Furthermore, these effects were better predicted by perceived control than by noise level. These observational data support the claim that learned helplessness contributes to the effects of noise exposure.
Resumo:
Vaccines to prevent PV infection, utilising PV L1 virus like particles (VLPs) to induce neutralising antibody, are in clinical trial and show all the characteristics likely to be associated with success. Results warrant global planning for the deployment of VLP vaccines within a decade, as part of a program to prevent cervical cancer. Vaccines designed to treat existing PV infection by inducing therapeutic cellular immunity targeted to PV proteins are at a much earlier stage of development. The wide choice of potential and proposed antigens, routes and mechanisms of delivery, and possible treatment regimens suggest that, to move the field forward, surrogate markers allowing comparison of the relative efficacy of different vaccine approaches are required. These should be based on reduction in load of virus infection, and need to be validated in animal models or in man. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Nine classes of integrable open boundary conditions, further extending the one-dimensional U-q (gl (212)) extended Hubbard model, have been constructed previously by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary systems are now solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained for all nine cases.
Resumo:
Percutaneous transluminal coronary angioplasty is a frequently used interventional technique to reopen arteries that have narrowed because of atherosclerosis. Restenosis, or renarrowing of the artery shortly after angioplasty, is a major limitation to the success of the procedure and is due mainly to smooth muscle cell accumulation in the artery wall at the site of balloon injury. In the present study, we demonstrate that the antiangiogenic sulfated oligosaccharide, PI-88, inhibits primary vascular smooth muscle cell proliferation and reduces intimal thickening 14 days after balloon angioplasty of rat and rabbit arteries. PI-88 reduced heparan sulfate content in the injured artery wall and prevented change in smooth muscle phenotype. However, the mechanism of PI-88 inhibition was not merely confined to the antiheparanase activity of this compound. PI-88 blocked extracellular signal-regulated kinase-1/2 (ERK1/2) activity within minutes of smooth muscle cell injury. It facilitated FGF-2 release from uninjured smooth muscle cells in vitro, and super-released FGF-2 after injury while inhibiting ERK1/2 activation. PI-88 inhibited the decrease in levels of FGF-2 protein in the rat artery wall within 8 minutes of injury. PI-88 also blocked injury-inducible ERK phosphorylation, without altering the clotting time in these animals. Optical biosensor studies revealed that PI-88 potently inhibited (K-i 10.3 nmol/L) the interaction of FGF-2 with heparan sulfate. These findings show for the first time the capacity of this sulfated oligosaccharide to directly bind FGF-2, block cellular signaling and proliferation in vitro, and inhibit injury-induced smooth muscle cell hyperplasia in two animal models. As such, this study demonstrates a new role for PI-88 as an inhibitor of intimal thickening after balloon angioplasty. The full text of this article is available online at http://www.circresaha.org.
Resumo:
Transfer of the herpes simplex virus type I thymidine kinase (HSV-TK) gene into tumor cells using virus-based vectors in conjunction with ganciclovir (GCV) exposure provides a potential gene therapy strategy for the treatment of cancer. Effective gene therapy,, depends on the efficient transfer and specific targeting of therapeutic genes and their protein products to target cells. The purpose of this study was to investigate the anti-tumor effect of Lentivirus-mediated and MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy in animal models. Mouse models were generated with intraperitoneal injection of human epithelial ovarian cancer cells 3AO, which are MUC1-positive. HTV-1-based lentiviral vectors carrying VP22-TK or scFv-VP22-TK were prepared. The animals were injected intraperitoneally with lentivirus containing scFv-VP22-TK, VP22-TK followed by GCV treatment. Combined treatment of lentivirus-expressed scFv-VP22-TK or VP22-TK with GCV inhibited the proliferation and prolonged survival times compared with the control vector. The survival time of animals treated with scFv-VP22-TK/GCV was significantly longer than that of animals treated with VP22-TK/GCV (p = 0.006). Conclusion: Our results suggest that MUC1 antibody-targeted VP22-TK/GCV suicide gene therapy can efficiently inhibit ovarian tumor growth and increase survival in a nude mouse model of ovarian carcinoma. These data support the development of this method for human clinical trials.