936 resultados para MICRODISC ELECTRODES
Resumo:
In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized ‘on’, ‘adjacent to’ and ‘away from’ the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.
Resumo:
By placing axons into polymeric micro-channels hosting embedded electrodes the extracellular amplitude of action potentials is greatly increased, allowing for robust recording and noise suppression. We are developing such an electrode interface to record electrical activity from bladder afferents to restore bladder control in patients suffering from spinal cord injury. Here we describe our microchannel electrode interface in terms of design, microfabrication and electrode characteristics and report on in vivo bladder function after implantation of teased dorsal rootlets within microchannels.
Resumo:
We are reporting on the fabrication and electrical characterization of a novel elastomer based micro-cuff neural interface. Electrodes are gold (Au) tracks of sub-100nm thickness and are thermally evaporated on a 0.5 mm thick polydimethylsiloxane (PDMS) substrate. We investigate how electrode area and immersion in phosphate buffered saline (PBS) at 37°C influence electrode impedance. A microfluidic channel is bonded to the electrode array to form the cuff. In an acute, in-vivo, proof-of-principle recording, the device is capable of detecting light stroking and pinch of a hind leg of an anaesthetized rat.
Resumo:
We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.
Resumo:
A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness. We designed a closed-loop neuroprosthetic interface that measures bladder fullness and prevents spontaneous voiding episodes without the need for dorsal rhizotomy in a rat model. To obtain bladder sensory information, we implanted teased dorsal roots (rootlets) within the rat vertebral column into microchannel electrodes, which provided signal amplification and noise suppression. As long as they were attached to the spinal cord, these rootlets survived for up to 3 months and contained axons and blood vessels. Electrophysiological recordings showed that half of the rootlets propagated action potentials, with firing frequency correlated to bladder fullness. When the bladder became full enough to initiate spontaneous voiding, high-frequency/amplitude sensory activity was detected. Voiding was abolished using a high-frequency depolarizing block to the ventral roots. A ventral root stimulator initiated bladder emptying at low frequency and prevented unwanted contraction at high frequency. These data suggest that sensory information from the dorsal root together with a ventral root stimulator could form the basis for a closed-loop bladder neuroprosthetic. Copyright © 2013, American Association for the Advancement of Science
Resumo:
A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current–voltage (I–V) and charge–voltage (Q–V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ≤ Pd ≤ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1− systems of N2 and ${\rm N}_2^+$ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m−3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK selected to identify possible cellular responses and targets related with 5 min exposure to the active gas in proximity of, but not directly in, the path of the discharge filaments. Both the parent strain and mutants populations were significantly reduced by more than 1.5 log cycles in these conditions, showing the potential of the system. Post-treatment storage studies showed that some transcription regulators and specific genes related to oxidative stress play an important role in the E. coli repair mechanism and that plasma exposure affects specific cell regulator systems.
Resumo:
Synesthesia entails a special kind of sensory perception, where stimulation in one sensory modality leads to an internally generated perceptual experience of another, not stimulated sensory modality. This phenomenon can be viewed as an abnormal multisensory integration process as here the synesthetic percept is aberrantly fused with the stimulated modality. Indeed, recent synesthesia research has focused on multimodal processing even outside of the specific synesthesia-inducing context and has revealed changed multimodal integration, thus suggesting perceptual alterations at a global level. Here, we focused on audio-visual processing in synesthesia using a semantic classification task in combination with visually or auditory-visually presented animated and in animated objects in an audio-visual congruent and incongruent manner. Fourteen subjects with auditory-visual and/or grapheme-color synesthesia and 14 control subjects participated in the experiment. During presentation of the stimuli, event-related potentials were recorded from 32 electrodes. The analysis of reaction times and error rates revealed no group differences with best performance for audio-visually congruent stimulation indicating the well-known multimodal facilitation effect. We found enhanced amplitude of the N1 component over occipital electrode sites for synesthetes compared to controls. The differences occurred irrespective of the experimental condition and therefore suggest a global influence on early sensory processing in synesthetes.
Resumo:
In this paper, we investigate the possibility to control a mobile robot via a sensory-motory coupling utilizing diffusion system. For this purpose, we implemented a simulation of the diffusion process of chemicals and the kinematics of the mobile robot. In comparison to the original Braitenberg vehicle in which sensorymotor coupling is tightly realised by hardwiring, our system employs the soft coupling. The mobile robot has two sets of independent sensory-motor unit, two sensors are implemented in front and two motors on each side of the robot. The framework used for the sensory-motor coupling was such that 1) Place two electrodes in the medium 2) Drop a certain amount of Chemical U and V related to the distance to the walls and the intensity of the light 3) Place other two electrodes in the medium 4) Measure the concentration of Chemical U and V to actuate the motors on both sides of the robot. The environment was constructed with four surrounding walls and a light source located at the center. Depending on the design parameters and initial conditions, the robot was able to successfully avoid the wall and light. More interestingly, the diffusion process in the sensory-motor coupling provided the robot with a simple form of memory which would not have been possible with a control framework based on a hard-wired electric circuit.
Resumo:
The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of surface EMG signals.
Resumo:
Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.
Resumo:
This paper demonstrates the oscillatory characteristics of electrical signals acquired from two ornamental plant types (Epipremnum pinnatum and Philodendron scandens - Family Araceae), using a noninvasive acquisition system. The electrical signal was recorded using Ag/AgCl superficial electrodes inside a Faraday cage. The presence of the oscillatory electric generator was shown using a classical power spectral density. The Lempel and Ziv complexity measurement showed that the plant signal was not noise despite its nonlinear behavior. The oscillatory characteristics of the signal were explained using a simulated electrical model that establishes that for a frequency range from 5 to 15 Hz, the oscillatory characteristic is higher than for other frequency ranges. All results show that non-invasive electrical plant signals can be acquired with improvement of signal-to-noise ratio using a Faraday cage, and a simple electrical model is able to explain the electrical signal being generated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Impedance spectroscopy has been proven a powerful tool for reaching high sensitivity in sensor arrays made with nanostructured films in the so-called electronic tongue systems, whose distinguishing ability may be enhanced with sensing units capable of molecular recognition. In this study we show that for optimized sensors and bio-sensors the dielectric relaxation processes involved in impedance measurements should also be considered, in addition to an adequate choice of sensing materials. We used sensing units made from layer-by-layer (LbL) films with alternating layers of the polyeletrolytes, poly(allylamine) hydrochloride (PAH) and poly(vinyl sulfonate) (PVS), or LbL films of PAH alternated with layers of the enzyme phytase, all adsorbed on gold interdigitate electrodes. Surprisingly, the detection of phytic acid was as effective in the PVS/PAH sensing system as with the PAH/phytase system, in spite of the specific interactions of the latter. This was attributed to the dependence of the relaxation processes on nonspecific interactions such as electrostatic cross-linking and possibly on the distinct film architecture as the phytase layers were found to grow as columns on the LbL film, in contrast to the molecularly thin PAH/PVS films. Using projection techniques, we were able to detect phytic acid at the micromolar level with either of the sensing units in a data analysis procedure that allows for further optimization.
Resumo:
Micronozzles with piezoelectric actuator were fabricated and investigated. The micronozzles were fabricated in glass substrates using a powder-blasting technique, and the actuator is a bimorph structure made from a piezoelectric polymer. The actuator was located at the nozzle outlet, and was driven in an oscillating mode by applying an alternating voltage across the actuator electrodes. With a pressure difference between inlet and outlet, the gas flow rate through the device was increased. This effect was quantified, and compared to a similar micronozzle with no actuator. The increase in the flow rate was defined as the gas flow through the micronozzle with actuator oscillating minus the gas flow without actuator, was found to depend on the inlet pressure, the pressure ratio, and the nozzle throat diameter. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate the dielectric dispersion of water, specially in the low-frequency range, by using the impedance spectroscopy technique. The frequency dependencies of the real R and imaginary Z parts of the impedance Could not be explained by means of the Usual description of the dielectric properties of the water as all insulating liquid containing ions. This is due to the incomplete knowledge of the parameters entering in the fundamental equations describing the evolution of the system, and oil the mechanisms regulating the exchange of charge of the cell with the external circuit. We propose a simple description of our experimental data based on the model of Debye, by invoking a dc conductivity of the cell, related to the nonblocking character of the electrodes. A discussion on the electric Circuits able to simulate the cell under investigation, based oil bulk and Surface elements, is also reported. We find that the simple circuit formed by a series of two parallels of resistance and capacitance is able to reproduce the experimental data concerning the real and imaginary part of the electrical impedance of the cell for frequency larger than 1 Hz. According to this description, one of the parallels takes into account the electrical properties of interface between the electrode and water, and the other of the bulk. For frequency lower than 1 Hz, a good agreement with the experimental data is obtained by simulating the electrical properties of the interface by means of the constant phase element.