942 resultados para MFI and OIT tests


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis bases on horizontal research project “The research about the fine structure and mechanical parameters of abutment jointed rock mass of high arch dam on Jinping Ⅰ Hydropower Station, Yalong River” and “The research about the fine structure and mechanical parameters of the columnar basalt rock mass on Baihetan Hydropower Station, Jinsha River”. A rounded system about the fine structure description and rock mass classification is established. This research mainly contains six aspects as follow: (1) Methods about fine structure description of the window rock mass; (2) The window rock mass classification about the fine structure; (3) Model test study of intermittent joints; (4) Window rock mass strength theory; (5) Numerical experimentations about window rock mass; (6) The multi-source fusion of mechanical parameters based on Bayes principle. Variation of intact rock strength and joint conditions with the weathering and relaxation degree is studied through the description of window rock mass. And four principal parameters: intact rock point load strength, integration degree of window rock mass, joint conditions, and groundwater condition is selected to assess the window rock mass. Window rock mass is classified into three types using the results of window rock mass fine structure description combined with joints develop model. Scores about intact rock strength, integrality condition, divisional plane condition and groundwater conditions are given based on window rock mass fine structure description. Then quality evaluation about two different types of rock mass: general joint structure and columnar jointing structure are carried out to use this window rock mass classification system. Application results show that the window rock mass classification system is effective and applicable. Aimed at structural features of window structure of “the rock mass damaged by recessive fracture”, model tests and numerical models are designed about intermittent joints. By conducting model tests we get shear strength under different normal stress in integrated samples, through samples and intermittent joints samples. Also, the changing trends of shear strength in various connectivity rates are analyzed. We numerically simulate the entire process of direct shear tests by using PFC2D. In order to tally the stress-strain curve of numerical simulation with experimental tests about both integrated samples and through samples, we adjust mechanical factors between particles. Through adopting the same particle geometric parameter, the numerical sample of intermittent joints in different connective condition is re-built. At the same time, we endow the rock bridges and joints in testing samples with the fixed particle contacting parameters, and conduct a series of direct shear tests. Then the destructive process and mechanical parameters in both micro-prospective and macro-prospective are obtained. By synthesizing the results of numerical and sample tests and analyzing the evolutionary changes of stress and strain on intermittent joints plane, we conclude that the centralization of compressive stress on rock bridges increase the shear strength of it. We discuss the destructive mechanics of intermittent joints rock under direct shear condition, meanwhile, divide the whole shear process into five phases, which are elasticity phase, fracture initiation phase, peak value phase, after-peak phase and residual phase. In development of strength theory, the shear strength mechanisms of joint and rock bridge are analyzed respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. Some sets of numerical simulation methods, i.e. the distinct element method (UDEC) based on in-situ geology mapping are developed and introduced. The working methods about determining mechanical parameters of intact rock and joints in numerical model are studied. The operation process and analysis results are demonstrated detailed from the research on parameters of rock mass based on numerical test in the Jinping Ⅰ Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Results about numerical simulation study show that we can get the shear strength mechanical parameters by changing the load conditions. The multi-source rock mass mechanical parameters can be fused by the Bayes theory, which are test value, empirical value and theoretical value. Then the value range and its confidence probability of different rock mass grade are induced and these data supports the reliability design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the detailed analysis of fundamental seismic data and theoretical method are given, and the tests of some new technologies are performed. For seismic data processing assembly, some key technologies are developed and applied, such as global static correction, amplitude consistency processing, wavelet consistency shaping, fine velocity model establishing and prestack time migration. These technologies can efficiently settle the problems during the course of multiple- block– jointed prestack time migration processing, and it is highly significant for holding the oil output of 40,000,000 tons for Daqing oilfield. Through the research of this dissertation, the following important contributions are shown: (1) The combination of near-surface model method and refraction static correction method is developed, and is applied to solve global static correction for the whole merging area. (2) Prestack amplitude normalization processing method based on fold is developed. The method eliminates the effects of fold on amplitude uniformity, and solves the problem of energy uniformity for tie-area prestack migration processing. (3) Wavelet consistency is investigated. For multiple survey blocks existing in the area, the optimum method of wavelet shaping is developed, which removes the waveform variance between two adjacent blocks. (4) Controlled velocity inversion (CVI) technique is used to establish migration velocity field. It can largely shorten the period of velocity modeling, and improve velocity analysis precision. (5) Float datum level technique is employed, and is able to guarantee prestack migration results of subsurface shallow layers. (6) The static partition of seismic data volume relating to migration aperture is firstly developed. And the precious imaging for huge data volume by prestack time migration is realized. (7) The numerical forward simulation and prestack migration processing is primarily combined to discuss the migration technique for a complex geology structure from practical field information. The combination of numerical simulation and prestack migration is a feasible way to solve the fine imaging of complex volcanic structure. And the combination approach can help to select appropriate migration parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great deal of joints and faults , existing in the rock mass , are the leading cause of discontinuous rock mass. Structural planes not only destroy the integrality of rock mass, but also lead nonlinearity、heterogeneity、anisotropy and failure mode on mechanical properties of rock mass. Therefore the selection of strength and deformation parameters was very difficult. In practical rock mass engineering, equivalent parameters of rock mass were selected by the method of expert experience and engineering analogy. Based on the fine description of discontinuous joints in the type Ⅳ and Ⅴ rock mass and geological survey datum in situ, models was obtained by generalizing the structure of rock mass by the method of statistical analysis. Model intensity and deformation test were carried out on the true triaxial apparatus. Intermediate principle stress effect, anisotropy and dimension effect of discontinuous rock mass were considered in the model test. 3-D correction to Hoek-Brown empirical criterion was done by analysed the test datum. Detailed works were listed as follows: (1) The factors influenced intensity and deformation of discontinuous joints rock mass were the value of 、continuity, density and included angle of joints and anisotropy of joint plane. True triaxial intensity and deformation tests were carried out by considering above factors. The influence rule was obtained and corresponding relation formulary was established; (2) Based on the true triaxial tests under different stress path and load modes, we obtain intensity and deformation rule of rock mass; (3) Based on a great deal of true triaxial tests and other test datum, correction to the Hoek-Brown empirical criterion was done in the chapter 4. The intermediate principle stress was considered in the corrected formulary. It indicated that the formulary was applicable under a certain condition. In addition, the yield plane form of corrected Hoek-Brown empirical criterion under principle stress space was described in the paper. And the question of corner of yield plane was discussed; (4) Based on the single discontinuity theory, the three-dimensional intensity formulary of discontinuous joint rock mass was established. Correction to the intensity formulary was done considering intermediate principle stress effect. We may obtain the conclusion that the intensity of the discontinuous joint rock mass was influenced on compositive factors. They were 、 、continuity、internal frictional angle and cohesiveness of joint plane and rock; (5) The results of the true triaxial model test was applied into parameters evaluation of dam foundation rock mass of JinPing hydropower station. For there were abundant ophicalcite in the dam foundation, the interval of intensity and formation parameters influenced on continuity were determined based on test datum. (6) Especial mould for prismatic jointing model was designed. True triaxial intensity and deformation tests by Basalt with prismatic jointing were carried out. The influence of intermediate principle stress, stress path, anisotropy effect and dimensional effect to intensity and deformation was discussed in the chapter 6. The work of (3)、(4)、(6) was significative supplement and innovation to current test and theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

China is a mountainous country in which geological hazards occurred frequently, especially in the east of China. Except the geology, topography and extreme climate, the large scale human activities have become a major factor to landslides. Typical human activities which induced landslides are fill, cut and underground mining. On the topic of the deformation mechanism and slope stability, taking three different man-made slopes as examples, deformation mechanism and slope stability were studied by several methods, such as field work, numerical modeling and monitor. The details are as following: (1) The numerical modeling approach advantages over other conventional methods such as limit methods, so the numerical modeling is the major tool in this thesis. So far, there is no uniform failure criterion for numerical simulation. The failure criterion were summarized and analyzed firstly, subsequently the appropriate criterion was determinated. (2) Taking 220kV Yanjin transformation substation fill slope as example, the deformable characteristic, unstable mode and laboratory tests were studied systematically. The results show: the slope deformation was probably caused by a combination effect of unfavorable topographic, geological and hydro geological conditions, and external loading due to filling. It was concluded that the creep deformation of the slope was triggered by external loading applied at the back of the slope. In order to define the calculating parameters, a set of consolidated drained (CD) tests, consolidated undrained (CU) tests, repeated direct shear tests and UCS tests were carried out. The stability of the slope before and after reinforcement was assessed using 3D numerical modeling and shear strength reduction technique. The numerical modeling results showed: the factor of safety (FOS) of the slope was 1.10 in the natural state, and reduced to 1.03 after fill, which was close to the critical state and it caused creeping slip or deformation under rainfall. The failure surface in the slope is in active shear failure, whereas tensile failure occurs at the slope crest. After the site was reinforced with piles, the FOS was 1.27. Therefore, the slope is stable after reinforcement measures were taken. (3) The cut slope stability is a complex problem. Taking the left cut slope of Xiangjiaba as example in this thesis, the deformation and slope stability were studied systematically by numerical modeling and monitor methods. The numerical results show: the displacement is gradually increasing along with the cutting, and the largest displacement is 27.5mm which located at the bench between the elevation 340 and 380. Some failure state units distribute near the undermining part and there is no linked failure state occurred from crest to bottom during cutting. After cutting, some failure units appeared at the ground surface between elevation 340 and 360. The increasing tense stress made the disturbed rock failed. The slope is stable after cutting by the monitor method, such as surface monitor, multipoint displacement meter, inclinometer and anchor cable tensometer. (4) The interaction between underground mining and slope stability is a common situation in mountainous. The slope deformation mechanism induced by underground mining may contributed significantly to slope destabilization. The Mabukan slope in xiangjiaba was analyzed to illustrate this. Failure mechanism and the slope stability were presented by numerical modeling and residual deformation monitor. The results show: the roof deformed to the free face and the floor uplift lightly to the free face. The subsidence basin is formed, but the subsidence and the horizontal movement is small, and there is no failure zone occurred. When the underground mining is going on, the roof deformation, subsidence and the horizontal movements begin increasing. The rock deformation near the free face is larger than the ground surface, and the interaction between these coal seams appeared. There are some tensile failures and shear failures occurred on the roof and floor, and a majority of failure is tensile failure. The roof deformation, subsidence and the horizontal movements increased obviously along with the underground mining. The failure characteristic is shear failure which means the tensile stress transformed to the compressive stress. So the underground mining will induced tensile stress first which lead to structure crack, subsequently the compressive stress appeared which result in slippage. The crest was subjected to horizontal tension which made the rock crack along with the joint. The long term residual deformation monitor demonstrates that the slope is stable after the underground mining stopped.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluating the mechanical properties of rock masses is the base of rock engineering design and construction. It has great influence on the safety and cost of rock project. The recognition is inevitable consequence of new engineering activities in rock, including high-rise building, super bridge, complex underground installations, hydraulic project and etc. During the constructions, lots of engineering accidents happened, which bring great damage to people. According to the investigation, many failures are due to choosing improper mechanical properties. ‘Can’t give the proper properties’ becomes one of big problems for theoretic analysis and numerical simulation. Selecting the properties reasonably and effectively is very significant for the planning, design and construction of rock engineering works. A multiple method based on site investigation, theoretic analysis, model test, numerical test and back analysis by artificial neural network is conducted to determine and optimize the mechanical properties for engineering design. The following outcomes are obtained: (1) Mapping of the rock mass structure Detailed geological investigation is the soul of the fine structure description. Based on statistical window,geological sketch and digital photography,a new method for rock mass fine structure in-situ mapping is developed. It has already been taken into practice and received good comments in Baihetan Hydropower Station. (2) Theoretic analysis of rock mass containing intermittent joints The shear strength mechanisms of joint and rock bridge are analyzed respectively. And the multiple modes of failure on different stress condition are summarized and supplied. Then, through introducing deformation compatibility equation in normal direction, the direct shear strength formulation and compression shear strength formulation for coplanar intermittent joints, as well as compression shear strength formulation for ladderlike intermittent joints are deducted respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. (3) Model test of rock mass containing intermittent joints Model tests are adopted to study the mechanical mechanism of joints to rock masses. The failure modes of rock mass containing intermittent joints are summarized from the model test. Six typical failure modes are found in the test, and brittle failures are the main failure mode. The evolvement processes of shear stress, shear displacement, normal stress and normal displacement are monitored by using rigid servo test machine. And the deformation and failure character during the loading process is analyzed. According to the model test, the failure modes quite depend on the joint distribution, connectivity and stress states. According to the contrastive analysis of complete stress strain curve, different failure developing stages are found in the intact rock, across jointed rock mass and intermittent jointed rock mass. There are four typical stages in the stress strain curve of intact rock, namely shear contraction stage, linear elastic stage, failure stage and residual strength stage. There are three typical stages in the across jointed rock mass, namely linear elastic stage, transition zone and sliding failure stage. Correspondingly, five typical stages are found in the intermittent jointed rock mass, namely linear elastic stage, sliding of joint, steady growth of post-crack, joint coalescence failure, and residual strength. According to strength analysis, the failure envelopes of intact rock and across jointed rock mass are the upper bound and lower bound separately. The strength of intermittent jointed rock mass can be evaluated by reducing the bandwidth of the failure envelope with geo-mechanics analysis. (4) Numerical test of rock mass Two sets of methods, i.e. the distinct element method (DEC) based on in-situ geology mapping and the realistic failure process analysis (RFPA) based on high-definition digital imaging, are developed and introduced. The operation process and analysis results are demonstrated detailedly from the research on parameters of rock mass based on numerical test in the Jinping First Stage Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Then the applicable fields are figured out respectively. (5) Intelligent evaluation based on artificial neural network (ANN) The characters of both ANN and parameter evaluation of rock mass are discussed and summarized. According to the investigations, ANN has a bright application future in the field of parameter evaluation of rock mass. Intelligent evaluation of mechanical parameters in the Jinping First Stage Hydropower Station is taken as an example to demonstrate the analysis process. The problems in five aspects, i. e. sample selection, network design, initial value selection, learning rate and expected error, are discussed detailedly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lower member of the lower Ganchaigou Formation in the southwestern of Qaidam Basin is one of the main targeted exploration zones. With the advancement of exploration, the targets are gradually switching into the lithologic reservoirs and it is urgent to gain the more precise research results in distribution of sedimentary facies and sandstones. Guided by the theory of sequence stratigraphy and sedimentology as well as on the basis of many logging data, drillings, seismic data and chemical tests, the paper comprehensively analyzes the sedimentary facies and sandstones in the lower member of lower Ganchaigou Formation in the southern of Chaixi. According to the identification marks of the key interface in sequence stratigraphy, the key interfaces in lower member of lower Ganchaigou Formation in the southwestern of Qaidam Basin are identified as two third-order sequences SQ1、SQ2. By calibrating the synthetic seismogram, the seismic sequence, well drilling and logging sequences are united. Based on the works above, this paper chooses seven primary cross-sections and builds connecting-well stratigraphic correlation of seven main connecting-well sections. Ultimately, the high-resolution sequence stratigraphic frameworks in the lower member of the lower Ganchaigou Formation, which are uniform to logging and seismic data, are figured out. In terms of study on each sequence features, the main style of the base-level cycle overlay which forms the third-order sequence is confirmed. It contains asymmetric “becoming deep upward” style and symmetry style. Researching on the spreading characters of sequence stratigraphy indicates that SQ1 and SQ2 are rather thicker near northwest well Shashen 20 and Shaxin1 while they are quite thiner near Hongcan 1, Yuejin, Qie 4 and Dong8-Wu3, and the thickness of SQ1 is thicker than SQ2.Based on the deep analysis of the marks for depositional facies, it is proposed that the lake facies and braid river deltas facies mainly occurred in study areas. Besides, the sorts of sub-facies and micro-facies model are divided and described. Under the control of high-resolution sequence stratigraphic framework, three source directions from Arlarer Mountain、Qimantage Mountain and Dongchai Mountain are identified by using the features of heavy mineral assemblage and paleogeomorphy. In addition, regularities of distribution sedimentary facies in sequence stratigraphic framework are studied in accordance with research thinking of the "point" (single well) "line" (section) "face" (plane). In the stage of lower member in the lower Ganchaigou Formation in the southwestern of Qaidam Basin, it is at the early phrase of evolution of the lake basin with the gradual outspread and the rise of the lake level. Combined with physical analysis of reservoir sands formed in different sedimentary environment, the paper studies the style of favorable sandstone bodies that are underwater distributary channel of braided rive delta front, coarse sand in mouth bar and the sand body in sand flat of shore-shallow lacustrine facies. Finally, this article comprehensively analyzes the distribution relationship between sedimentary facies and favorable sandstone body and proposes the ideas that sequence SQ1 Yuejin area, well east 8-wu3 area, well qie4-qie1 area and well hongcan2 area are distributed areas of favorable sandstone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rockfall is a geological evolution process involving detachment of blocks or boulders from a slope face, then their free falls, bouncing, rolling or sliding, and finally deposition near the toe of the slope. Many facts indicate that the rockfall can cause hazards to peoples, and it can be regarded as a geological hazard. A rockfall event may only involve a boulder or rock, and also several ones. When there are peoples, buildings, or other man-made establishments within the scope of rockfall trajectory, losses will be possibly induced in tenns of human lives or damages to these facilities. Researches into mechanism, kinematics, dynamics, hazard assessment, risk analysis, and mitigation measures of rockfalls are extremely necessary and important. Occurrence of rockfall is controlled by a lot of conditions, mainly including topographical, geomorphic, geological ones and triggering factors. The rockfall especially in mountainous areas, has different origins, and occurs to be frequent, unexpected, uncertain, in groups, periodic and sectional. The characterization and classification of the rockfalls not only increase knowledge about rockfall mechanism, but also can instruct mitigation of the hazards. In addition, stability of potential rockfalls have various sensitivity to different triggering factors and changes of geometrical conditions. Through theoretical analyses, laboratory experiments and field tests, the author presents some back-analysis methods for friction coefficients of sliding and rolling, and restitution coefficients. The used input data can be obtained economically and accurately in the field. Through deep studies on hazard assessment methods and analysis of factors influencing rockfall hazard, this paper presents a new assessment methodology consisting of preliminary assessment and detailed one. From the application in a 430 km long stretch of the Highway, which is located between Paksho and Nyingtri in Tibet, the methodology can be applicable for the rockfall hazard assessment in complex and difficult terrains. In addition, risk analyses along the stretch are conducted by computing the probability of encountering rockfalls and life losses resulting from rockfall impacts. Rockfall hazards may be mitigated by avoiding hazardous areas, clearness of dangerous rocks, reinforcement, obstructing the rockfalls, leading the rockfalls, warning and monitoring for rockfalls, etc. Seen from present remedial level of rockfall hazards, different mitigation measures, economical and effective buffering units, monitoring tecliniques and consciousness of environmental protection for rockfall mitigations should be further developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stack Spontaneous Potential (SSP) is a direct hydrocarbon location technology and a new hydrocarbon detection method with independent intellectual property. A subsurface hydrocarbon accumulation associated with the upward hydrocarbon micro seepage induces a relatively strong negative potential abnormal zone, of which the anomaly can be measured on the surface with specially designed instruments through careful field measuring procedures. With special software programmed according to a unique geochemical and geophysical model, the original data are analyzed, processed and interpreted on the computer, and then on a series of resulting anomaly distribution maps and/or profiles, the favorable surface locations of the hydrocarbon accumulations can be easily identified. The study of the SSP has been started since 1989, and especially from 1996 to 1997, both profile and area tests were conducted in the Daqing Oilfield. On the testing line of 15kms, there are 6 wells in total, among which some are oil-producing wells, and some are water-producing wells. The final matching ratio of the favorable oil well locations and the possible water well locations predicted by the SSP to those of known wells was up to 83 percent. In the area test, of which the acreage is 800 km2, the matching ratio compared with the existing wells was 87 percent; furthermore, regarding to wells subsequently drilled after the test, the matching ratio was 85 percent. The matching ratio in the development area is more about 10 percent than those of in exploration area. The reason is that, comparing the exploration area, the development area acreage is less and the container rocks are more simplex. In development area there is not so much interference of SSP also. Since 1997 the SSP has been tested and applied all over China to a number of hydrocarbon bearing basins and known oil fields, including the Daqing, Jiangsu, Changqing, Shengli, Nanyang, Jianghan and Zhongyuan Oilfields, only to name a few. The SSP surveys in total areas of over 10,000km2 in more than 30 regions in China so far have been completed in various exploration and development stages, the satisfactory outcomes of which have further evidenced that the dependence between the SP anomaly and abundance of hydrocarbon. Up to date, a substantial amount of successful tests and actual surveys finished in exploration and development practices have evidenced that the SSP is significantly more reliable in comparison with any other similar direct hydrocarbon indication technique generally known to the oil industry, such as the Redox. The SSP can be applied to search for almost all kinds of hydrocarbon accumulations, regardless of the type of traps, such as structural, stratigraphic, buried hill traps, and so on; however, it is interesting to be noted that the SSP seems to be particularly effective in detecting the stratigraphic oil traps according to our practices. On the other hand, there is virtually no surface geographical constrains in terms of field data acquisition, except for those water covered areas, because of the inherent characteristics of the technology itself. Furthermore, utilizing the SSP requires no special considerations to subsurface geological conditions in regard to formation resistivity, since the SSP measurements will not be influenced by either overly high or overly low resistivity of formations lying above the hydrocarbon accumulations. There are two kind of theory, of which, as we know one is called hypbyssal theory such as "Redox"[61 the other is call plutonic theory such as cracking of hydrocarbon [8][9] and natural polarization [3], to describe the mechanism of SP anomaly of oil reservoir and to indicate that the dependence between the SP abnormality and abundance of hydrocarbon has be existed theoretically/The quantitative dependence, which has not been founded due to the complicity of container rocks, be discovered during the exploration and development practices is the crux to the quantitative analysis of SP Anomaly processing. Based on the thorough study of the complex of collector rocks, every kind of thickness of collector rock can be conversed to be a standard effective thickness; the thickness is called apparent effective thickness (AET). The conversation coefficient (ai, 1=1,2,3) could be determined by the variety of every collector rock storability (CRS). The discoveration of quantitative: dependence between AET and the amplitude of SSP, in the practices of exploration and development, is a promotion for the SSP supplied in the oil exploration, and make the data analysis forward to the quantitative stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saprolite is the residual soil resulted from completely weathered or highly weathered granite and with corestones of parent rock. It is widely distributed in Hong Kong. Slope instability usually happens in this layer of residual soil and thus it is very important to study the engineering geological properties of Saprolite. Due to the relic granitic texture, the deformation and strength characteristics of Saprolite are very different from normal residual soils. In order to investigate the effects of the special microstructure on soil deformation and strength, a series of physical, chemical and mechanical tests were conducted on Saprolite at Kowloon, Hong Kong. The tests include chemical analysis, particle size analysis, mineral composition analysis, mercury injection, consolidation test, direct shear test, triaxial shear test, optical analysis, SEM & TEM analysis, and triaxial shear tests under real-time CT monitoring.Based on the testing results, intensity and degree of weathering were classified, factors affecting and controlling the deformation and strength of Saprolite were identified, and the interaction between those factors were analyzed.The major parameters describing soil microstructure were introduced mainly based on optical thin section analysis results. These parameters are of importance and physical meaning to describe particle shape, particle size distribution (PSD), and for numerical modeling of soil microstructure. A few parameters to depict particle geometry were proposed or improved. These parameters can be used to regenerate the particle shape and its distribution. Fractal dimension of particle shape was proposed to describe irregularity of particle shapes and capacity of space filling quantitatively. And the effect of fractal dimension of particle shape on soil strength was analyzed. At the same time, structural coefficient - a combined parameter which can quantify the overall microstructure of rock or soil was introduced to study Saprolite and the results are very positive. The study emphasized on the fractal characteristics of PSD and pore structure by applying fractal theory and method. With the results from thin section analysis and mercury injection, it was shown that at least two fractal dimensions Dfl(DB) and Df2 (Dw), exist for both PSD and pore structure. The reasons and physical meanings behind multi-fractal dimensions were analyzed. The fractal dimensions were used to calculate the formation depth and weathering rate of granite at Kowloon. As practical applications, correlations and mathematical models for fractal dimensions and engineering properties of soil were established. The correlation between fractal dimensions and mechanical properties of soil shows that the internal friction angle is mainly governed by Dfl 9 corresponding to coarse grain components, while the cohesion depends on Df2 , corresponding to fine grain components. The correlations between the fractal dimension, friction angle and cohesion are positive linear.Fractal models of PSD and pore size distribution were derived theoretically. Fragmentation mechanism of grains was also analyzed from the viewpoint of fractal. A simple function was derived to define the theoretical relationship between the water characteristic curve (WCC) and fractal dimension, based on a number of classical WCC models. This relationship provides a new analytical tool and research method for hydraulic properties in porous media and solute transportation. It also endues fractal dimensions with new physical meanings and facilitates applications of fractal dimensions in water retention characteristics, ground water movement, and environmental engineering.Based on the conclusions from the fractal characteristics of Saprolite, size effect on strength was expressed by fractal dimension. This function is in complete agreement with classical Weibull model and a simple function was derived to represent the relationship between them.In this thesis, the phenomenon of multi-fractal dimensions was theoretically analyzed and verified with WCC and saprolite PSD results, it was then concluded that multi-fractal can describe the characteristics of one object more accurately, compared to single fractal dimension. The multi-fractal of saprolite reflects its structural heterogeneity and changeable stress environment during the evolution history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IQ Structure, Psycholinguistic and Visual-motor Abilities Study on Children Learning Disability TONG Fang Directed by professor Zhu Liqi (Developmental and educational psychology) ABSTRACT Objective To comprehensive analyze the IQ structures, and relationships among IQ, psychometric characteristics and visual-motor integration on children disability. At same time, to probe into the family factors that influenced IQ, psycholinguistic abilities and behavior of LD children. Method (1) Downloading the papers on children learning disability from www.cqvip.com and www.wanfangdata.com, in which, the articles were collected by key words from 1985 to 2005. To conduct meta-analysis on IQ construction, compare the case group and the control group, including full IQ, verbal and practice IQ. (2) Designed with model compared and self-compared, 59 diagnosed learning disability children, tested themes with WISC, ITPA and Berry’s VMI. WISC included 10 items, 5 of which subtotal to verbal and practice IQ respectively. IPTA included 10 items, too, 5 process of which subtotal to auditory and visual perception. The first 3 items shared representation level, the other 2 of that shared automatic level.VMI had one score. Analyzed factors and levels with description and Pearson Correlation. To probe to linguistic internal alternately functions of LD children, and compare the scores of groups in different IQ. (3) Analyzed the perspective questionnaire filled by parents. Early development facts compared with model groups. Factors relationships analyzed with Kendall correlation, KOM and Bartlett’s test of sphericity, Promax Rotation. Results: (1) There have been 319 papers related with LD, in which 36 with IQ and 14 valid reports have been analyzed by Meta. FIQ’s 95%CI (confidence interval) is 2.418 ~ 0.172, VIQ between the difficulty and non- difficulty group. C-WISC-R reports were 10 papers, of which, 95%CI of FIQ is 2.424 ~ 0.676, of VIQ is 2.314 ~ 1.196, of PIQ is 2.176 ~ 0.176. The VIQ comparing the PIQ, 95%CI is 1.1 ~ -0.07 in difficulty group and 0.5 ~ -0.0046 in non-difficult group. Nevertheless, in the other 4 tests, FIQ’s 95%CI is 2.00 ~ -0.818 between LD and NLD. (2) Children psycholinguistic abilities had strong relation with Berry’s VMI test excluding auditory reception, and with perceptive factor of intelligence excluding verbal expression. Auditory reception and visual closure had strong relation with FIQ and PIQ. Grammatic closure, visual association and manual expression had strong relation with concept factor. The representational and automatic levels are depended on integration of auditory and visual procession. Lower verbal expression (VE) let to lower expression process and low scores on representational level. Lower visual sequential memory (VSM) let to lower memory process and influenced automatic level. Groups compared by IQ 90 show that LD children with under IQ 90 had lower scores on items of IPTA than with up IQ 90 excluded verbal expression. It was proved that IQ administrated the linguistic ability. Nevertheless, general abilities deficiency didn’t show influencing on the types of the perceptive delay. There was mutual function among linguistic ability on LD children. Auditory and visual level are overlapped each other. Not only show higher Decoding and lower Encoding on Auditory perception, lower Decoding and higher Encoding on Visual perception, in representation, but also higher Sequential remember, lower Closure on Audition, and lower Sequential member, higher Closure on Vision, in Automation. Nevertheless, there was no different between Representational and Automatic level, which may be the relationship of parallel or evolution. (3) Major family factors were father’s education, occupation. Lower auditory perception related to unconcerned, lower visual perception related to premature delivery and written slowly. Threatened–abortion, childbirth-suffocated were known as influencing children’s IQ and later linguistic abilities. It wasn’t shown that dosage relationship with the types of perceptive delay. Conclusion: (1) The FIQ, VIQ and PIQ of Children with LD is lower than that of NLD group. There is no significantly different between VIQ and PIQ in LD and NLD groups. (2) The objectives of ITPA and WISC tests are differently. The psycholinguistic abilities had strong relation with perceptive factor and VMI. Some facts of IPTA related with FIQ. IQ had strong administration on linguistic abilities. There was mutual function among linguistic internal abilities. (3) Family facts on IQ and psycholinguistic abilities were Father’s education, abnormal pregnant and abortion. It would be pre-show development delay in early period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the major characteristics of creative thinking development for the school children in Beijing with paper/pencil tests. The “Creative Thinking Test” was executed. The representative samples were two groups of students who came from the classes in 3rd-grade to 12th-grade of normal schools in Beijing. The classes were selected at random, one grade one class. One group is composed of 387 students (218 males, 169 females) in 1993, the other is composed of 420 students (181 males, 239 females) in 2006. According to the data analysis, the major characteristics and the changes over the 13 years of the development of creative thinking for student were explored and discussed. 1) The development trends of three types of creative thinking were all flexuous increase with grade moving up. The mean score of elementary school students was the lowest. And scores of junior high school students and senior high school students were significant higher than elementary school students’. 2) The most rapid increase occurred from the 5th grade to 6th grade. 3) Slumps occurred in the 7th grade in PNE curve and also in the 9th and 12th grades in TPC curves. There was no slump in FGA curve. 4) The girl’s scores in PNE and TPC tests were significant better than boys’. No obvious gender difference was found in FGA test. 5) The scores of three creative thinking tests in 2006 were all better than those in 1993. Separately, the scores of FGA and TPC tests in 2006 were significant higher than the corresponding scores in 1993, and no significant difference was found in two PNE tests. 6) There was no significant difference in the maximum scores of the three creative thinking tests between 2006 and 1993. 7) The most rapid developing period of three types of creative thinking in 2006 were the 5th grade and the 6th grade. The same period in 1993 was from the 7th grade to 9th grade. 8) In 1993, there is no significant gender difference for each creative thinking test. In 2006, PNE and TPC results had remarkable gender difference that girls were higher than boys. No significant gender difference was found in FGA tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questionnaire of Stressors, which was constructed earlier, and Resilience Factor Scale were applied on 252 Chinese University students and 207 American University students. Reliability and validity tests were applied on the data. Results are as following: 1. Cronbach α coefficient of both scales were tested and showed good results. Construction validity of them was also tested by applying Factor Analysis on the data. The results are good. 2. Stressors of University students consist of three factors, named Survival Anxiety, Social Anxiety, and Role Stress. Resilience Factors consist of Social Support and Self-Efficacy. They affected each other. Significant correlation was found among those five factors. 3. Significant differences were found between Chinese sample and American sample in the scores of most items of the two scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technical efficiency in volleyball is closely related to the ability to perform displacements or jump (1). Therefore, it is necessary that precise, individualized, and localized evaluation of the muscles frequently involved in volleyball practice be studied (2,3). The aim of this study was to analyze the neuromuscular changes of the knee musculature in professional volleyball players using Tensiomyography (TMG) and jump tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Extradomain A from fibronectin (EDA) has an immunomodulatory role as fusion protein with viral and tumor antigens, but its effect when administered with bacteria has not been assessed. Here, we investigated the adjuvant effect of EDA in mice immunizations against Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis). Since lipopolysaccharide (LPS) is a major virulence factor and the LPS O-polysaccharide (O-PS) is the immunodominant antigen in serological diagnostic tests, Salmonella mutants lacking O-PS (rough mutants) represent an interesting approach for developing new vaccines and diagnostic tests to differentiate infected and vaccinated animals (DIVA tests). Here, antigenic preparations (hot-saline extracts and formalin-inactivated bacterins) from two Salmonella Enteritidis rough mutants, carrying either intact (SE Delta waaL) or deep-defective (SE Delta gal) LPS-Core, were used in combination with EDA. Biotinylated bacterins, in particular SE Delta waaL bacterin, decorated with EDAvidin (EDA and streptavidin fusion protein) improved the protection conferred by hot-saline or bacterins alone and prevented significantly the virulent infection at least to the levels of live attenuated rough mutants. These findings demonstrate the adjuvant effect of EDAvidin when administered with biotinylated bacterins from Salmonella Enteritidis lacking O-PS and the usefulness of BEDA-SE Delta waaL as non-live vaccine in the mouse model.