845 resultados para MEDIAL PREFRONTAL CORTEX
Resumo:
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-l-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (K) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.
Resumo:
Hypoxia in neonates can lead to biochemical and molecular alterations mediated through changes in neurotransmitters resulting in permanent damage to brain. In this study, we evaluated the changes in the receptor status of GABAA in the cerebral cortex and brainstem of hypoxic neonatal rats and hypoxic rats supplemented with glucose and oxygen using binding assays and gene expression of GABAAa1 and GABAAc5. In the cerebral cortex and brainstem of hypoxic neonatal rats, a significant decrease in GABAA receptors was observed, which accounts for the respiratory inhibition. Hypoxic rats sup- plemented with glucose alone and with glucose and oxygen showed, respectively, a reversal of the GABAA receptors, andGABAAa1 and GABAAc5 gene expression to control. Glucose acts as an immediate energy source thereby reducing the ATP-depletion-induced increase in GABA and oxygenation, which helps in encountering anoxia. Resuscitation with oxygen alone was less effective in reversing the receptor alterations. Thus, the results of this study suggest that reduction in the GABAA receptors functional regulation during hypoxia plays an important role in mediating the brain damage. Glucose alone and glucose and oxygen supplementation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.
Resumo:
In the present work, the role of oxygen, epinephrine and glucose supplementation in regulating neurotransmitter contents, adrenergic and glutamate receptor binding parameters in the cerebral cortex of experimental groups of neonatal rats were investigated. The study of neurotransmitters and their receptors in the cerebral cortex and the EEG pattern in the brain regions of neonatal rats were taken as index for brain damage due to hypoxia, oxygen and epinephrine. Real-Time PCR work was done to confirm the binding parameters. Second messenger, cyclic Adenosine Monophosphate (cAMP) was assayed to find the functional correlation of the receptors. Behavioural studies were carried out to confirm the biochemical and molecular studies. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The addictive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures from the molecular study brought to practice will lead to maintain healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.
Resumo:
Stimuli outside classical receptive fields have been shown to exert significant influence over the activities of neurons in primary visual cortexWe propose that contextual influences are used for pre-attentive visual segmentation, in a new framework called segmentation without classification. This means that segmentation of an image into regions occurs without classification of features within a region or comparison of features between regions. This segmentation framework is simpler than previous computational approaches, making it implementable by V1 mechanisms, though higher leve l visual mechanisms are needed to refine its output. However, it easily handles a class of segmentation problems that are tricky in conventional methods. The cortex computes global region boundaries by detecting the breakdown of homogeneity or translation invariance in the input, using local intra-cortical interactions mediated by the horizontal connections. The difference between contextual influences near and far from region boundaries makes neural activities near region boundaries higher than elsewhere, making boundaries more salient for perceptual pop-out. This proposal is implemented in a biologically based model of V1, and demonstrated using examples of texture segmentation and figure-ground segregation. The model performs segmentation in exactly the same neural circuit that solves the dual problem of the enhancement of contours, as is suggested by experimental observations. Its behavior is compared with psychophysical and physiological data on segmentation, contour enhancement, and contextual influences. We discuss the implications of segmentation without classification and the predictions of our V1 model, and relate it to other phenomena such as asymmetry in visual search.
Resumo:
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.
Resumo:
Understanding how biological visual systems perform object recognition is one of the ultimate goals in computational neuroscience. Among the biological models of recognition the main distinctions are between feedforward and feedback and between object-centered and view-centered. From a computational viewpoint the different recognition tasks - for instance categorization and identification - are very similar, representing different trade-offs between specificity and invariance. Thus the different tasks do not strictly require different classes of models. The focus of the review is on feedforward, view-based models that are supported by psychophysical and physiological data.
Resumo:
Stimuli outside classical receptive fields significantly influence the neurons' activities in primary visual cortex. We propose that such contextual influences are used to segment regions by detecting the breakdown of homogeneity or translation invariance in the input, thus computing global region boundaries using local interactions. This is implemented in a biologically based model of V1, and demonstrated in examples of texture segmentation and figure-ground segregation. By contrast with traditional approaches, segmentation occurs without classification or comparison of features within or between regions and is performed by exactly the same neural circuit responsible for the dual problem of the grouping and enhancement of contours.
Resumo:
In a recent experiment, Freedman et al. recorded from inferotemporal (IT) and prefrontal cortices (PFC) of monkeys performing a "cat/dog" categorization task (Freedman 2001 and Freedman, Riesenhuber, Poggio, Miller 2001). In this paper we analyze the tuning properties of view-tuned units in our HMAX model of object recognition in cortex (Riesenhuber 1999) using the same paradigm and stimuli as in the experiment. We then compare the simulation results to the monkey inferotemporal neuron population data. We find that view-tuned model IT units that were trained without any explicit category information can show category-related tuning as observed in the experiment. This suggests that the tuning properties of experimental IT neurons might primarily be shaped by bottom-up stimulus-space statistics, with little influence of top-down task-specific information. The population of experimental PFC neurons, on the other hand, shows tuning properties that cannot be explained just by stimulus tuning. These analyses are compatible with a model of object recognition in cortex (Riesenhuber 2000) in which a population of shape-tuned neurons provides a general basis for neurons tuned to different recognition tasks.
Resumo:
El artículo forma parte de la sección de la revista: Reflexiones. Resumen de la revista
Resumo:
BACKGROUND AND PURPOSE: We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays. EXPERIMENTAL APPROACH: Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated. KEY RESULTS :Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity. CONCLUSIONS AND IMPLICATIONS: Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding.
Resumo:
Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. In vivo electroencephalographic recordings from SOX1 mutants established a correlation between behavioral changes and cortical output that was consistent with a seizure origin in the limbic forebrain. In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges. Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice
Resumo:
The piriform cortex (PC) is highly prone to epileptogenesis, particularly in immature animals, where decreased muscarinic modulation of PC intrinsic fibre excitatory neurotransmission is implicated as a likely cause. However, whether higher levels of acetylcholine (ACh) release occur in immature vs. adult PC remains unclear. We investigated this using in vitro extracellular electrophysiological recording techniques. Intrinsic fibre-evoked extracellular field potentials (EFPs) were recorded from layers II to III in PC brain slices prepared from immature (P14-18) and adult (P>40) rats. Adult and immature PC EFPs were suppressed by eserine (1muM) or neostigmine (1muM) application, with a greater suppression in immature ( approximately 40%) than adult ( approximately 30%) slices. Subsequent application of atropine (1muM) reversed EFP suppression, producing supranormal ( approximately 12%) recovery in adult slices, suggesting that suppression was solely muscarinic ACh receptor-mediated and that some 'basal' cholinergic 'tone' was present. Conversely, atropine only partially reversed anticholinesterase effects in immature slices, suggesting the presence of additional non-muscarinic modulation. Accordingly, nicotine (50muM) caused immature field suppression ( approximately 30%) that was further enhanced by neostigmine, whereas it had no effect on adult EFPs. Unlike atropine, nicotinic antagonists, mecamylamine and methyllycaconitine, induced immature supranormal field recovery ( approximately 20%) following anticholinesterase-induced suppression (with no effect on adult slices), confirming that basal cholinergic 'tone' was also present. We suggest that nicotinic inhibitory cholinergic modulation occurs in the immature rat PC intrinsic excitatory fibre system, possibly to complement the existing, weak muscarinic modulation, and could be another important developmentally regulated system governing immature PC susceptibility towards epileptogenesis.
Resumo:
Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.
Resumo:
The characteristics of muscarinic acetylcholine receptor agonist-induced epileptiform bursting seen in immature rat piriform cortex slices in vitro were further investigated using intracellular recording, with particular focus on its postnatal age-dependence (P+14-P+30), pharmacology, site(s) of origin and the likely contribution of the muscarinic acetylcholine receptor agonist-induced post-stimulus slow afterdepolarization and gap junction functionality toward its generation. The muscarinic agonist, oxotremorine-M (10 microM), induced rhythmic bursting only in immature piriform cortex slices; however, paroxysmal depolarizing shift amplitude, burst duration and burst incidence were inversely related to postnatal age. No significant age-dependent changes in neuronal membrane properties or postsynaptic muscarinic responsiveness accounted for this decline. Burst incidence was higher when recorded in anterior and posterior regions of the immature piriform cortex. In adult and immature neurones, oxotremorine-M effects were abolished by M1-, but not M2-muscarinic acetylcholine receptor-selective antagonists. Rostrocaudal lesions, between piriform cortex layers I and II, or layer III and endopiriform nucleus in adult or immature slices did not influence oxotremorine-M effects; however, the slow afterdepolarization in adult (but not immature) lesioned slices was abolished. Gap junction blockers (carbenoxolone or octanol) disrupted muscarinic bursting and diminished the slow afterdepolarization in immature slices, suggesting that gap junction connectivity was important for bursting. Our data show that neural networks within layers II-III function as primary oscillatory circuits for burst initiation in immature rat piriform cortex during persistent muscarinic receptor activation. Furthermore, we propose that muscarinic slow afterdepolarization induction and gap junction communication could contribute towards the increased epileptiform susceptibility of this brain area.
Resumo:
Cannabis is a potential treatment for epilepsy, although the few human studies supporting this use have proved inconclusive. Previously, we showed that a standardized cannabis extract (SCE), isolated Delta(9)-tetrahydrocannabinol (Delta(9)-THC), and even Delta(9)-THC-free SCE inhibited muscarinic agonist-induced epileptiform bursting in rat olfactory cortical brain slices, acting via CB1 receptors. The present work demonstrates that although Delta(9)-THC (1microM) significantly depressed evoked depolarizing postsynaptic potentials (PSPs) in rat olfactory cortex neurones, both SCE and Delta(9)-THC-free SCE significantly potentiated evoked PSPs (all results were fully reversed by the CB1 receptor antagonist SR141716A, 1microM); interestingly, the potentiation by Delta(9)-THC-free SCE was greater than that produced by SCE. On comparing the effects of Delta(9)-THC-free SCE upon evoked PSPs and artificial PSPs (aPSPs; evoked electrotonically following brief intracellular current injection), PSPs were enhanced, whereas aPSPs were unaffected, suggesting that the effect was not due to changes in background input resistance. Similar recordings made using CB1 receptor-deficient knockout mice (CB1(-/-)) and wild-type littermate controls revealed cannabinoid or extract-induced changes in membrane resistance, cell excitability and synaptic transmission in wild-type mice that were similar to those seen in rat neurones, but no effect on these properties were seen in CB1(-/-) cells. It appears that the unknown extract constituent(s) effects over-rode the suppressive effects of Delta(9)-THC on excitatory neurotransmitter release, which may explain some patients' preference for herbal cannabis rather than isolated Delta(9)-THC (due to attenuation of some of the central Delta(9)-THC side effects) and possibly account for the rare incidence of seizures in some individuals taking cannabis recreationally