999 resultados para MECHANICAL THROMBECTOMY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-8Gd-0.6Zr-xEr (x = 1, 3 and 5 mass%) alloys were prepared by casting technology, and the microstructures, age hardening behaviors and mechanical properties of alloys have been investigated. Microstructures of the alloys are characterized by the presence of rosette-shaped equiaxed grains. The age hardening behaviors and the tensile properties are enhanced by adding Er element. The maximum aged hardness of Mg-8Gd-0.6Zr-5Er alloy is 97, it is nearly 1.24 times higher than that of Er-free alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die-cast Mg-4Al-0.4Mn-xNd(x = 0, 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully and influences of Nd on the microstructure, mechanical properties and corrosion behavior of the Mg-4Al-0.4Mn alloy have been investigated. The results showed that with the addition of Nd binary Al2Nd phase and Al11Nd3 phase. which mainly aggregated along the grain boundaries, were formed, and the relative ratio of above two phases was in correlation with the Nd content in the alloy. Meanwhile, the grain sizes were greatly reduced with the increasing Nd content. It was found that due to the addition of Nd both the tensile properties and corrosion resistance were improved substantially.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, compositional dependence of age hardening characteristics and tensile properties were investigated for Mg-4Ho-xY-0.6Zr alloys (x = 0, 3 5, and 7 wt%). The result showed that with increasing Y content, the hardness of the alloys increased in the as-quenched and aged-peak conditions. Considerable age hardening response was recognized for the alloys. When the alloy containing 7% Y showed the most remarkable age hardening response at aging temperature of 250 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, melt blends of poly(butylene terephthalate) (PBT) with epoxy resin were characterized by dynamic mechanical analysis, differential scanning calorimetry, tensile testing, Fourier transform infrared spectroscopy, and wide-angle X-ray diffraction. The results indicate that the presence of epoxy resin influenced either the mechanical properties of the PBT/epoxy blends or the crystallization of PBT. The epoxy resin was completely miscible with the PBT matrix. This was beneficial to the improvement of the impact performance of the PBT/epoxy blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-8Gd-2Y-1Nd-0.3Zn-0.6Zr (wt.%) alloy sheet was prepared by hot extrusion technique, and the structure and mechanical properties of the extruded alloy were investigated. The results show that the alloy in different states is mainly composed of alpha-Mg solid solution and secondary phases of Mg5RE and Mg24RE5 (RE = Gd, Y and Nd). At aging temperatures from 200 degrees C to 300 degrees C the alloy exhibits obvious age-hardening response. Great improvement of mechanical properties is observed in the peak-aged state alloy (aged at 200 degrees C for 60 h), the ultimate tensile strength (sigma(b)), tensile yield strength (sigma(0.2)) and elongation (epsilon) are 376 MPa, 270 MPa and 14.2% at room temperature (RT), and 206 MPa. 153 MPa and 25.4% at 300 degrees C, respectively, the alloy exhibits high thermal stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-4Al-4Nd-0.5Zn-0.3Mn alloy was prepared by metal mould casting method. Microstructure, aging behavior, mechanical properties and fracture morphology of the alloy were investigated. The results showed that alpha-Mg, Al-11 Nd-3, Al2Nd and Mg-32(Al,Zn)(49) phases were the main phases of the as-cast alloy. And the long rod-like Al-11 Nd-3 phase was decomposed to granular Al2Nd through T6 heat treatment. The tensile strength was also enhanced by T6 treatment. The yield strength was increased by 17% and 21% at RT and 150 degrees C, respectively. It was mainly because that the precipitates were refined through T6 treatment and this became more benefit to hinder dislocations slipping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures and mechanical properties of cast Mg-Zn-Al-RE alloys with 4 wt.% RE and variable Zn and At contents were investigated. The results show that the alloys mainly consist of alpha-Mg, Al2REZn2, Al4RE and tau-Mg-32(Al,Zn)(49) phases. and a little amount of the beta-Mg17Al12 phase will also be formed with certain Zn and At contents. When increasing the Zn or At content, the distribution of the Al2REZn2 and Al4RE phases will be changed from cluster to dispersed, and the content of tau-Mg-32(Al,Zn)(49) phase increased gradually. The distribution of the Al2REZn2 and Al4RE phases, and the content of beta- or tau-phase are critical to the mechanical properties of Mg-Zn-Al-RE alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mg-12Gd-4Y-2Nd-0.3Zn-0.6Zr (wt.%) alloy was prepared by casting technology, and the structure, age hardening behavior and mechanical properties of the alloy have been investigated. The results demonstrated that the alloy was composed of alpha-Mg matrix, a lot of dispersed Mg24RE5 (RE = Gd/Y/Nd) and Mg5RE precipitates in the as-cast and the T6 state alloys. The alloy exhibited remarkable age hardening response and excellent mechanical properties from room temperature (RT) to 300 degrees C by optimum solid solution and aging conditions. The ultimate tensile strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti40Cu40Ni10Zr10-xScx (x = 0.5 and 1, at%) alloys were prepared by copper mould casting method. Microstructures of the phi 3 mm rod alloys were investigated by XRD and SEM. The results showed that the phi 3 mm rods were glassy matrix with TiCu crystalline phase. Mechanical properties were studied by compressive test. Ti40Cu40Ni10Zr9Sc1 alloy exhibited good compressive strength over 2200 MPa and superior compressive deformation is about 7.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of multiwalled carbon nanotubes (MWCNTs) and Ni2O3 on the flame retardancy of linear low density polyethylene (LLDPE) have been studied. A combination of MWCNTs and Ni2O3 showed a synergistic effect in improving the flame retardancy of LLDPE compared with LLDPE composites containing MWCNTs or Ni2O3 alone. As a result, the peak value of heat release rate measured by cone calorimeter was obviously decreased in the LLDPE/MWCNTs/Ni2O3 Composites. According to the results from rheological tests, carbonization experiments, and structural characterization of residual char, the improved flame retardancy was partially attributed to the formation of a networklike structure due to the good dispersion of MWCNTs in LLDPE matrix, and partially to the carbonization of degradation products of LLDPE catalyzed by Ni catalyst originated from Ni2O3, More importantly, both viscoelastic characteristics and catalytic carbonization behavior of LLDPE/MWCNTs/Ni2O3 composites acted in concert to result in a synergistic effect in improving the flame retardancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, electronic, and mechanical properties of ReB and ReC have been studied by use of the density functional theory. For each compound, six structures are considered, i.e., hexagonal WC, NiAs, wurtzite, cubic NaCl, CsCl, and zinc-blende type structures. The results indicate that for ReB and ReC, WC type structure is energetically the most stable among the considered structures, followed by NiAs type structure. ReB-WC (i.e., ReB in WC type structure) and ReB-NiAs are both thermodynamically and mechanically stable. ReC-WC and ReC-NiAs are mechanically stable and becomes thermodynamically stable above 35 and 55 GPa, respectively. The estimated hardness from shear modulus is 34 GPa for ReB-WC, 28GPa for ReB-NiAs, 35GPa for ReC-WC and 37GPa for ReC-NiAs, indicating that they are potential candidates to be ultra-incompressible and hard materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, mechanical and electronic properties Of OsC2 were investigated by use of the density functional theory. Seven structures were considered, i.e., orthorhombic Cmca (No. 12, OsSi2), Pmmn (No. 59, 002) and Pnnm (No. 58, OsN2); tetragonal P4(2)/mnm (No. 136, OsO2) and 14/mmm (No. 139, CaC2); cubic Fm-3m (No. 225, CaF2) and Pa-3 (No. 205, PtN2). The results indicate that Cmca in OsSi2 type structure is energetically the most stable phase among the considered structures. It is also stable mechanically. OsC2 in Pmmn phase has the largest bulk modulus 319 GPa and shear modulus 194 GPa. The elastic anisotropy is discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure and mechanical properties of beta-nucleated iPP before and after being annealed at different temperatures (90-160 degrees C) have been analyzed, Annealing induced different degrees of variation in fracture toughness of beta-nucleated iPP samples. namely, slight enhancement at relatively low annealing temperatures (< 110 degrees C) and great improvement at moderate temperatures (120-130 degrees C), whereas dramatic deterioration at relatively high temperatures ( > 140 degrees C) has been observed. The variation of fracture toughness of beta-nucleated iPP is observed to be dependent on the content of beta-NA. Experiments, including scanning electronic microscope (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA), are performed to study the variations of microstructures as well as the toughening mechanism of the beta-nucleated iPP after being annealed.