937 resultados para MANIPULATION
Resumo:
Merula is a thirty-minute work for bass flute and electronics, commissioned by Icelandic flautist Kolbeinn Bjarnason. The premiere took place in the Belfast Festival at Queen’s in November 2012. A recording will be made in 2014. Further performances in Iceland, Norway and Poland are anticipated in 2014-15. I have given a research seminar on this work at Queen’s and will deliver it again at the University of Oxford during 2013-14.
Research Goals
1) To develop an effective means of notating live electronics in a manner that would sustain the work's performance history beyond the current generation of software
2) To apply the techniques of transcription and spectralism used in my composition, Perseid, using birdsongs as source material
3) To explore the problem of sustaining large-scale form in music that is primarily fast
4) To facilitate the emergence of the solo bass flute as an important solo instrument through the completion of a new large-scale work
Methodology
• Methodologies employed in this project included sound recording, sound analysis and transcription, extensive precompositional sketching, electroacoustic techniques of sound manipulation, designing complex live processes of sound transformation and spatialisation
• A considerable part of this work was collaboration with the flautist, both in SARC and Iceland. Mr. Bjarnason was involved all stages of the work, frequently recording source materials and helping to ensure the idiomatic nature of the flute writing.
• Developing a means of notating the live electronics. Building on a model suggested by Pierre Boulez in Anthemes 2 (1998), the score of this work includes a technical manual that describes electronic processes in a manner that can be reprogrammed in subsequent generations of software. Combined with a system of notations employed in the full score, the technical manual will enable this composition to be performed by a wide range of performers and technical teams, with appropriately identical results.
Resumo:
The requirements for metrology of magnetostriction in complex multilayers and on whole wafers present challenges. An elegant technique based on radius of curvature deformation of whole wafers in a commercial metrology tool is described. The method is based on the Villari effect through application of strain to a film by introducing a radius of curvature. Strain can be applied tensilely and compressively depending on the material. The design, while implemented on 3'' wafers, is scalable. The approach removes effects arising from any shape anisotropy that occurs with smaller samples, which can lead to a change in magnetic response. From the change in the magnetic anisotropy as a function of the radius, saturation magnetostriction ?s can be determined. Dependence on film composition and film thickness was studied to validate the radius of curvature approach with other techniques. ?s decreases from positive values to negative values through an increase in Ni concentration around the permalloy composition, and ?s also increases with a decrease in film thickness, in full agreement with previous reports. We extend the technique by demonstrating the technique applied to a multi-layered structure. These results verify the validity of the method and are an important step to facilitate further work in understanding how manipulation of multilayered films can offer tailored magnetostriction.
Resumo:
The effect of spillover processes on the activity of a catalyst system consisting of a mixed oxygen ion and electronic conducting support La0.6Sr0.4Co0.2Fe0.8O3d and a metal catalyst (Pt) were investigated. Two types of model single-pellet catalysts were used employing Pt deposited on both sides of a dense LSCF disc pellet. One of these single pellets employed highly disperse, physically non-continuous Pt, in contrast to studies on electrochemical promotion, while the other used a low dispersion continuous film. Driving forces for promoter migration were controlled through the manipulation of the oxygen chemical potential difference across the membrane. Catalyst rate modification was observed in all cases. However, it was found that there is a complex relationship between the rate modification, the driving forces for spillover and the geometrical arrangement of the catalyst on the support (i.e. catalyst dispersion).
Resumo:
A systematic review was conducted of studies evaluating the effects of interventions aimed at reducing ethnic prejudice and discrimination in young children. Articles published between 1980 and 2010 and including children of 8 years and under were identified, harvested, and assessed for quality, both for the exposure/program as well as for the evaluation. In total, 32 studies (14 contact and 18 media or instruction) yielded 62 effects on attitudes and 59 effects on peer relations. An overall count of the positive (40%), non-significant (50%), and negative effects (10%) indicate a mixed picture. Overall, more attitude effects (55%) than peer relations effects (25%) were positive, and media/instruction (47%) was more successful than contact (36%). Most of the effects were observed with children from a majority ethnicity: 67% of the attitude effects were positive, and media/instruction and contact were equally effective at delivering these. Few differences were found as a function of the quality of the exposure and evaluation, but differences were found depending on the context of exposure (naturally occurring or experimental manipulation) and research design (random assignment or self-selection). In conclusion, the findings were more mixed than expected, though sufficiently strong studies exist to provide lessons for future research.
--------------------------------------------------------------------------------
Resumo:
A prominent criticism of compatibilist theories of moral responsibility is that they do not deal adequately with cases of manipulation, and particularly with induced desires. So, for example, accounts that give the conditions for responsibility in terms of the reasons-responsiveness of the mechanism governing one's decisions, as Fischer and Ravizza (1998) do, seem to leave the door open to cases such as the following.
Resumo:
The aspiration the spatial planning should act as the main coordinating function for the transition to a sustainable society is grounded on the assumption that it is capable of incorporating both a strong evidence base of environmental accounting for policy, coupled with opportunities for open, deliberative decision-making. While there are a number of increasingly sophisticated methods (such as material flow analysis and ecological footprinting) that can be used to longitudinally determine the impact of policy, there are fewer that can provide a robust spatial assessment of sustainability policy. In this paper, we introduce the Spatial Allocation of Material Flow Analysis (SAMFA) model, which uses the concept of socio-economic metabolism to extrapolate the impact of local consumption patterns that may occur as a result of the local spatial planning process at multiple spatial levels. The initial application the SAMFA model is based on County Kildare in the Republic of Ireland, through spatial temporal simulation and visualisation of construction material flows and associated energy use in the housing sector. Thus, while we focus on an Ireland case study, the model is applicable to spatial planning and sustainability research more generally. Through the development and evaluation of alternative scenarios, the model appears to be successful in its prediction of the cumulative resource and energy impacts arising from consumption and development patterns. This leads to some important insights in relation to the differential spatial distribution of disaggregated allocation of material balance and energy use, for example that rural areas have greater resource accumulation (and are therefore in a sense “less sustainable”) than urban areas, confirming that rural housing in Ireland is both more material and energy intensive. This therefore has the potential to identify hotspots of higher material and energy use, which can be addressed through targeted planning initiatives or focussed community engagement. Furthermore, due to the ability of the model to allow manipulation of different policy criteria (increased density, urban conservation etc), it can also act as an effective basis for multi-stakeholder engagement.
Resumo:
Bayesian probabilistic analysis offers a new approach to characterize semantic representations by inferring the most likely feature structure directly from the patterns of brain activity. In this study, infinite latent feature models [1] are used to recover the semantic features that give rise to the brain activation vectors when people think about properties associated with 60 concrete concepts. The semantic features recovered by ILFM are consistent with the human ratings of the shelter, manipulation, and eating factors that were recovered by a previous factor analysis. Furthermore, different areas of the brain encode different perceptual and conceptual features. This neurally-inspired semantic representation is consistent with some existing conjectures regarding the role of different brain areas in processing different semantic and perceptual properties. © 2012 Springer-Verlag.
Resumo:
Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations. © 2012 American Institute of Physics.
Resumo:
Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p <0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p <0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.
Resumo:
Background
Individuals with Prader-Willi syndrome (PWS) have been shown to demonstrate a particular cognitive deficit in attention switching and high levels of preference for routine and temper outbursts. This study assesses whether a specific pathway between a cognitive deficit and behaviour via environmental interaction can exist in individuals with PWS.
Methods
Four individuals with PWS participated in a series of three single-case experiments including laboratory-based and natural environment designs. Cognitive (computer-based) challenges placed varying demands on attention switching or controlled for the cognitive demands of the tasks while placing no demands on switching. Unexpected changes to routines or expectations were presented in controlled games, or imposed on participants' natural environments and compared with control conditions during which no unexpected changes occurred. Behaviour was observed and heart rate was measured.
Results
Participants showed significantly increased temper outburst related behaviours during cognitive challenges that placed demands on attention switching, relative to the control cognitive challenges. Participants showed significantly increased temper outburst related behaviours when unexpected changes occurred in an experimental or the natural environment compared with when no changes occurred.
Conclusions
Difficult behaviours that could be triggered reliably in an individual by a specific cognitive demand could also be triggered via manipulation of the environment. Results suggest that a directional relationship between a specific cognitive deficit and behaviour, via environmental interaction, can exist in individuals with PWS.
Resumo:
Despite the fact that the UK has highest potential in the EU to generate renewable energy from wind, it lags behind its European partners. The departure point for this study is provided by the fact that the land use planning system has been perceived by some to create difficulties in pursuit of the achievement of National Action Plan targets. In the course of a review of literature, legislation, policy and case files a number of issues emerge relating not only to operational practice but structural concerns regarding knowledge, legitimacy and ethics. These are scrutinised in an empirical investigation which provides insights into the ontologies behind how knowledge is used and abused. Concerns are highlighted regarding the tactical manipulation of knowledges and the difficulties associated with objectifying evidence so that it can be understood, validated and authenticated. The paper concludes by reflecting on the implications for the regulatory framework, the legitimisation of decisions and the ethics of the profession and how these, in turn, are conditioned by the production, use and transparency of planning knowledge.
Resumo:
Directional modulation (DM) is a recently introduced technique for secure wireless transmission using direct physical layer wave-front manipulation. This paper provides a bit error rate (BER)-based DM array synthesis method. It is shown for the first time that the standard constellation mappings in In-phase and Quadrature (IQ) space to a pre-specified BER can be exactly achieved along a given specified spatial direction. Different receiver capabilities are investigated and different assessment metrics for each case are discussed. The approach is validated for a 1 × 4 element dipole array operating at 1 GHz.
Resumo:
This paper presents the background rationale and key findings for a model-based study of supercritical waste heat recovery organic Rankine cycles. The paper’s objective is to cover the necessary groundwork to facilitate the future operation of a thermodynamic organic Rankine cycle model under realistic thermodynamic boundary conditions for performance optimisation of organic Rankine cycles. This involves determining the type of power cycle for organic Rankine cycles, the circuit configuration and suitable boundary conditions. The study focuses on multiple heat sources from vehicles but the findings are generally applicable, with careful consideration, to any waste heat recovery system. This paper introduces waste heat recovery and discusses the general merits of organic fluids versus water and supercritical operation versus subcritical operation from a theoretical perspective and, where possible, from a practical perspective. The benefits of regeneration are investigated from an efficiency perspective for selected subcritical and supercritical conditions. A simulation model is described with an introduction to some general Rankine cycle boundary conditions. The paper describes the analysis of real hybrid vehicle data from several driving cycles and its manipulation to represent the thermal inertia for model heat input boundary conditions. Basic theory suggests that selecting the operating pressures and temperatures to maximise the Rankine cycle performance is relatively straightforward. However, it was found that this may not be the case for an organic Rankine cycle operating in a vehicle. When operating in a driving cycle, the available heat and its quality can vary with the power output and between heat sources. For example, the available coolant heat does not vary much with the load, whereas the quantity and quality of the exhaust heat varies considerably. The key objective for operation in the vehicle is optimum utilisation of the available heat by delivering the maximum work out. The fluid selection process and the presentation and analysis of the final results of the simulation work on organic Rankine cycles are the subjects of two future publications.
Resumo:
Parametric interactions in nonlinear crystals represent a powerful tool in the optical manipulation of information, both in the classical and the quantum regime. Here, we analyze in detail classical and quantum aspects of three-and five-mode parametric interactions in chi(2) nonlinear crystals. The equations of motion are explicitly derived and then solved within the parametric approximation. We describe several applications, including holography, all-optical gates, generation of entanglement, and telecloning. Experimental results on the photon distributions and correlations of the generated beams are also reported and discussed.
Resumo:
The scale of BT's operations necessitates the use of very large scale computing systems, and the storage and management of large volumes of data. Customer product portfolios are an important form of data which can be difficult to store in a space efficient way. The difficulties arise from the inherently structured form of product portfolios, and the fact that they change over time as customers add or remove products. This paper introduces a new data-modelling abstraction called the List_Tree. It has been designed specifically to support the efficient storage and manipulation of customer product portfolios, but may also prove useful in other applications with similar general requirements.