949 resultados para MALARIA PARASITES
Resumo:
The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK.
Resumo:
The group of haemosporidian parasites is of general interest to basic and applied science, since several species infect mammals, leading to malaria and associated disease symptoms. Although the great majority of haemosporidian parasites appear in bird hosts, as in the case of Leucocytozoon buteonis, there is little genomic information about genetic aspects of their co-evolution with hosts. Consequently, there is a high need for parasite-enrichment strategies enabling further analyses of the genomes, namely without exposure to DNA-intercalating dyes. Here, we used flow cytometry without an additional labelling step to enrich L. buteonis from infected buzzard blood. A specific, defined area of two-dimensional scattergramms was sorted and the fraction was further analysed. The successful enrichment of L. buteonis in the sorted fraction was demonstrated by Giemsa-staining and qPCR revealing a clear increase of parasite-specific genes, while host-specific genes were significantly decreased. This is the first report describing a labelling-free enrichment approach of L. buteonis from infected buzzard blood. The enrichment of parasites presented here is free of nucleic acid-intercalating dyes which may interfere with fluorescence-based methods or subsequent sequencing approaches.
Resumo:
Parasitic infections with gastrointestinal nematodes (GINs) still represent a worldwide major pathological threat associated with the outdoor production of various livestock species. Because of the widespread resistance to synthetic chemical anthelmintics, there is a strong impetus to explore novel approaches for a more integrated management of the infections. The use of nutraceuticals in the control of GINs is one of the alternatives which has been widely studied for since 20 years. The objectives of this review are: i) to define and illustrate the concept of ‘nutraceutical’ in the context of veterinary parasitology based on data obtained on the most studied GIN models in small ruminants, the tannin-containing legumes (Fabaceae); ii) to illustrate how the ‘nutraceutical concept’ could be expanded to other plants, other livestock production systems and other GI parasitic diseases, and iii) to explain how this concept is opening up new research fields for better understanding the interactions between the host, the digestive parasites and the environment.
Resumo:
This article investigates the impact of exposure to a serious, unusual, and unforeseen malaria epidemic in northeast Brazil in 1938–40 on subsequent human capital attainment and income. Arguing the event was exogenous, the article exploits cohort and regional heterogeneity in exposure to identify effects. Results are consistent with differential mortality rates according to gender and socioeconomic status, such that heterogeneous selection and scarring effects are observed. Analyzing by gender alone, positive (selection) effects are found for men, and mixed (positive and negative) effects for women. Allowing for heterogeneity by race, selection effects persist for men. In contrast, positive (selection) effects are observed for nonwhite women, and negative (scarring) effects for white women. Results contribute to evidence suggesting that exposure to negative environmental shocks affects human capital attainment, while also suggesting it heterogeneously affects cohort composition.
Resumo:
The drug quinine figured as an object of enforced consumption in British India between the late 1890s and the 1910s, when the corresponding diagnostic category malaria itself was redefined as a mosquito-borne fever disease. This article details an overlapping milieu in which quinine, mosquitoes and malaria emerged as intrinsic components of shared and symbiotic histories. It combines insights from new imperial histories, constructivism in the histories of medicine and literature about non-humans in science studies to examine the ways in which histories of insects, drugs, disease and empire interacted and shaped one another. Firstly, it locates the production of historical intimacies between quinine, malaria and mosquitoes within the exigencies and apparatuses of imperial rule. In so doing, it explores the intersections between the worlds of colonial governance, medical knowledge, vernacular markets and pharmaceutical business. Secondly, it outlines ways to narrate characteristics and enabling properties of non-humans (such as quinines and mosquitoes) while retaining a constructivist critique of scientism and empire. Thirdly, it shows how empire itself was reshaped and reinforced while occasioning the proliferation of categories and entities like malaria, quinine and mosquitoes.
Resumo:
The phylogeography of South American lineages is a topic of heated debate. Although a single process is unlikely to describe entire ecosystems, related species, which incur similar habitat limitations, can inform the history for a subsection of assemblages. We compared the phylogeographic patterns of the cytochrome oxidase I marker from Anopheles triannulatus (N = 72) and previous results for A. darlingi (N = 126) in a broad portion of their South American distributions. Both species share similar population subdivisions, with aggregations northeast of the Amazon River, in southern coastal Brazil and 2 regions in central Brazil. The average (ST) between these groups was 0.39 for A. triannulatus. Populations northeast of the Amazon and in southeastern Brazil are generally reciprocally monophyletic to the remaining groups. Based on these initial analyses, we constructed the a priori hypothesis that the Amazon and regions of high declivity pose geographic barriers to dispersal in these taxa. Mantel tests confirmed that these areas block gene flow for more than 1000 km for both species. The efficacy of these impediments was tested using landscape genetics, which could not reject our a priori hypothesis but did reject simpler scenarios. Results form summary statistics and phylogenetics suggest that both lineages originated in central Amazonia (south of the Amazon River) during the late Pleistocene (579 000 years ago) and that they followed the same paths of expansion into their contemporary distributions. These results may have implications for other species sharing similar ecological limitations but probably are not applicable as a general paradigm of Neotropical biogeography.
Resumo:
Extensive population structuring is known to occur in Anopheles darlingi, the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation-dispersal-drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 854-866.
Resumo:
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.
Resumo:
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P. falciparum-infected erythrocytes shows that at R and S stages, a time-increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time-increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.
Resumo:
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In many hemolytic disorders, such as malaria, the release of free heme has been involved in the triggering of oxidative stress and tissue damage. Patients presenting with severe forms of malaria commonly have impaired regulatory responses. Although intriguing, there is scarce data about the involvement of heme on the regulation of immune responses. In this study, we investigated the relation of free heme and the suppression of anti-inflammatory mediators such as PGE(2) and TGF-beta in human vivax malaria. Patients with severe disease presented higher hemolysis and higher plasma concentrations of Cu/Zn superoxide dismutase (SOD-1) and lower concentrations of PGE(2) and TGF-beta than those with mild disease. In addition, there was a positive correlation between SOD-1 concentrations and plasma levels of TNF-alpha. During antimalaria treatment, the concentrations of plasma SOD-1 reduced whereas PGE(2) and TGF-beta increased in the individuals severely ill. Using an in vitro model with human mononuclear cells, we demonstrated that the heme effect on the impairment of the production of PGE(2) and TGF-beta partially involves heme binding to CD14 and depends on the production of SOD-1. Aside from furthering the current knowledge about the pathogenesis of vivax malaria, the present results may represent a general mechanism for hemolytic diseases and could be useful for future studies of therapeutic approaches. The Journal of Immunology, 2010, 185: 1196-1204.
Resumo:
We describe the epidemiology of malaria in a frontier agricultural settlement in Brazilian Amazonia. We analysed the incidence of slide-confirmed symptomatic infections diagnosed between 2001 and 2006 in a cohort of 531 individuals (2281.53 person-years of follow-up) and parasite prevalence data derived from four cross-sectional surveys. Overall, the incidence rates of Plasmodium vivax and P. falciparaum were 20.6/100 and 6.8/100 person-years at risk, respectively, with a marked decline in the incidence of both species (81.4 and 56.8%, respectively) observed between 2001 and 2006. PCR revealed 5.4-fold more infections than conventional microscopy in population-wide cross-sectional surveys carried out between 2004 and 2006 (average prevalence, 11.3 vs. 2.0%). Only 27.2% of PCR-positive (but 73.3% of slide-positive) individuals had symptoms when enrolled, indicating that asymptomatic carriage of low-grade parasitaemias is a common phenomenon in frontier settlements. A circular cluster comprising 22.3% of the households, all situated in the area of most recent occupation, comprised 69.1% of all malaria infections diagnosed during the follow-up, with malaria incidence decreasing exponentially with distance from the cluster centre. By targeting one-quarter of the households, with selective indoor spraying or other house-protection measures, malaria incidence could be reduced by more than two-thirds in this community. (C) 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Genetic diversity and population structure of Plasmodium viva-V parasites call predict the origin and Spread of novel Variants Within a population enabling Population specific malaria control measures. We analyzed the genetic diversity and population Structure of 425 P. vivax isolates from Sri Lanka, Myanmar, and Ethiopia using 12 trinucleotide and tetranucleotide microsatellite markers. All three parasite populations were highly polymorphic with 3-44 alleles per locus. Approximately 65% were multiple-clone infections. Mean genetic diversity (H(E)) was 0.7517 in Ethiopia, 0.8450 in Myanmar, and 0.8610 in Sri Lanka. Significant linkage disequilibrium Was maintained. Population structure showed two clusters (Asian and African) according to geography and ancestry Strong clustering of outbreak isolates from Sri Lanka and Ethiopia was observed. Predictive power of ancestry using two-thirds of the isolates as a model identified 78.2% of isolates accurately as being African or Asian. Microsatellite analysis is a useful tool for mapping short-term outbreaks of malaria and for predicting ancestry.