978 resultados para Loviisa Nuclear Power Plant
Resumo:
v. 1. The factory buildings / W. L. Case -- v. 8. The power plant / D. M. Myers. [c1920] -- v. 9. The mechanical equipment / J. W. Roe. [c1922]
Resumo:
"29 August 1989."
Resumo:
On verso: Taken from the smoke stack of the Washington Street Power Plant. In another hand: Hospital still unfinished in interior. Nurses Dorm not yet started
Resumo:
Understanding, and controlling, the conditions under which calcite precipitates within geothermal energy production systems is a key step in maintaining production efficiency. In this study, I apply methods of bulk and clumped isotope thermometry to an operating geothermal energy facility in northern Nevada to see how those methods can better inform the facility owner, AltaRock Energy, Inc., about the occurrence of calcite scale in their power plant. I have taken water samples from five production wells, the combined generator effluent, shallow cold-water wells, monitoring wells, and surface water. I also collected calcite scale samples from within the production system. Water samples were analyzed for stable oxygen isotope composition (d18O). Calcite samples were analyzed for stable oxygen and carbon (d13C) composition, and clumped isotope composition (D47). With two exceptions, the water compositions are very similar, likely indicating common origin and a well-mixed hydrothermal system. The calcite samples are likewise similar to one another. Apparent temperatures calculated from d18O values of water and calcite are lower than those recorded for the system. Apparent temperatures calculated from D47 are several degrees higher than the recorded well temperatures. The lower temperatures from the bulk isotope data are consistent with temperatures that could be expected during a de-pressurization of the production system, which would cause boiling in the pipes, a reduction in system temperature, and rapid precipitation of calcite scale. However, the high apparent temperature indicated by the D47 data suggests that the calcite is depleted in clumped isotopes given the known temperature of the system, which is inconsistent with this hypothesis. This depletion could instead result from disequilibrium isotopic fractionation during the aforementioned boil events, which would make both the apparent d18O-based and D47-based temperatures unrepresentative of the actual water temperature. This research can help improve our understanding of how isotopic analyses can better inform us about the movement of water through geothermal systems of the past and how it now moves through modern systems. Increased understanding of water movement in these systems could potentially allow for more efficient utilization of geothermal energy as a renewable resource.
Resumo:
Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations in the containment sump. Two dispersed phases were conditions to determine the influence of entrained air from a jet on the transport of fibre agglomerates through the sump. The strainer model of A. Grahn was implemented to observe the impact that the accumulation of the fibres have on the pressure drop across the strainers. The geometry considered is similar to the containment sump configurations found in Nuclear Power Plants.
Resumo:
In this paper we provide evidence for the effects of social norms on audit pricing by studying companies belonging to the alcohol, firearms, gambling, military, nuclear power, and tobacco industries,which are often described as “sin” companies. We hypothesize that the disparities between “sin” firms operations and prevailing social norms create an adverse context which heightens the client's business risk assessment by auditors and is, thereby, reflected in the pricing decisions for audit and consulting services. Having controlled for the impact of variables relating to client attributes, auditor attributes and engagement attributes, we demonstrate that audit firms charge significantly higher audit and consulting fees to companies that deviate from prevailing social norms. Additionally,we show that audit pricing levels within the “sin” group depend both on prevailing political views and on the level of “vice” exhibited by “sin” companies.
Resumo:
Polycrystalline zirconium nitride (ZrN) samples were irradiated with He +, Kr ++, and Xe ++ ions to high (>1·10 16 ions/cm 2) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nanoindentation. Nanoindentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples.
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.
Resumo:
The aim of the case study is to express the delayed repair time impact on the revenues and profit in numbers with the example of the outage of power plant units. Main steps of risk assessment: • creating project plan suitable for risk assessment • identification of the risk factors for each project activities • scenario-analysis based evaluation of risk factors • selection of the critical risk factors based on the results of quantitative risk analysis • formulating risk response actions for the critical risks • running Monte-Carlo simulation [1] using the results of scenario-analysis • building up a macro which creates the connection among the results of the risk assessment, the production plan and the business plan.
Resumo:
A megújuló energiatermelés szerepének erősödését figyelhetjük meg az utóbbi években, évtizedekben. A zöldenergiák iránti igényt három fő motivátorcsoporttal lehet indokolni: ellátásbiztonság növelése, környezetvédelem és gazdaságélénkítés. Ezek a szempontok együttesen a fenntartható fejlődést szolgálják, és egyre inkább előtérbe kerülnek mind az EU, mind pedig hazánk szintjén. Magyarország 2010 végén az EU által előírt, 2020-ra elérendő 13%-os megújuló energiaarányt meghaladó, 14,65%-os vállalást tett a Nemzeti Cselekvési Tervben, ezzel is kifejezve elköteleződését a zöldenergiák ösztönzése felé. A jelenlegi kapacitások több mint megkétszerezését igénylő cél a hazai megújuló energiaszektor számára érdemi lehetőségeket jelent, de ezek megvalósításához szükség lenne az ígért új zöldenergia-támogatási rendszer, mielőbbi életbe lépésére. ____ The role of the renewable energy generation is getting even bigger and bigger in the last years, decades. The demand for the green energy has three main motivators: energy security, protecting the environment and fostering innovation. These goals serve the conception of sustainable development, and their function is increasingly highlighted in the EU and in Hungary as well. The EU has prescribed Hungary to reach a 13% share of renewable energy sources in 2020, but in the Hungarian national renewable action plan we have aimed to top the EU request, and to reach a 14,65% in the renewable proportion. This shows that our country is committed to inspire the renewables. In order to reach this goal, Hungary has to more than double its green power plant capacity, which means great possibilities in the sector; but at the same time means challenges as well, because the new renewable promoting system needs to come into force as soon as possible.
Resumo:
Fossil fuels constitute a significant fraction of the world's energy demand. The burning of fossil fuels emits huge amounts of carbon dioxide into the atmosphere. Therefore, the limited availability of fossil fuel resources and the environmental impact of their use require a change to alternative energy sources or carriers (such as hydrogen) in the foreseeable future. The development of methods to mitigate carbon dioxide emission into the atmosphere is equally important. Hence, extensive research has been carried out on the development of cost-effective technologies for carbon dioxide capture and techniques to establish hydrogen economy. Hydrogen is a clean energy fuel with a very high specific energy content of about 120MJ/kg and an energy density of 10Wh/kg. However, its potential is limited by the lack of environment-friendly production methods and a suitable storage medium. Conventional hydrogen production methods such as Steam-methane-reformation and Coal-gasification were modified by the inclusion of NaOH. The modified methods are thermodynamically more favorable and can be regarded as near-zero emission production routes. Further, suitable catalysts were employed to accelerate the proposed NaOH-assisted reactions and a relation between reaction yield and catalyst size has been established. A 1:1:1 molar mixture of LiAlH 4, NaNH2 and MgH2 were investigated as a potential hydrogen storage medium. The hydrogen desorption mechanism was explored using in-situ XRD and Raman Spectroscopy. Mesoporous metal oxides were assessed for CO2 capture at both power and non-power sectors. A 96.96% of mesoporous MgO (325 mesh size, surface area = 95.08 ± 1.5 m2/g) was converted to MgCO 3 at 350°C and 10 bars CO2. But the absorption capacity of 1h ball milled zinc oxide was low, 0.198 gCO2 /gZnO at 75°C and 10 bars CO2. Interestingly, 57% mass conversion of Fe and Fe 3O4 mixture to FeCO3 was observed at 200°C and 10 bars CO2. MgO, ZnO and Fe3O4 could be completely regenerated at 550°C, 250°C and 350°C respectively. Furthermore, the possible retrofit of MgO and a mixture of Fe and Fe3O 4 to a 300 MWe coal-fired power plant and iron making industry were also evaluated.
Resumo:
Based on the possibility of real-time interaction with three-dimensional environments through an advanced interface, Virtual Reality consist in the main technology of this work, used in the design of virtual environments based on real Hydroelectric Plants. Previous to the process of deploying a Virtual Reality System for operation, three-dimensional modeling and interactive scenes settings are very importante steps. However, due to its magnitude and complexity, power plants virtual environments generation, currently, presents high computing cost. This work aims to present a methodology to optimize the production process of virtual environments associated with real hydroelectric power plants. In partnership with electric utility CEMIG, several HPPs were used in the scope of this work. During the modeling of each one of them, the techiniques within the methodologie were addressed. After the evaluation of the computional techniques presented here, it was possible to confirm a reduction in the time required to deliver each hydroelectrical complex. Thus, this work presents the current scenario about development of virtual hydroelectric power plants and discusses the proposed methodology that seeks to optimize this process in the electricity generation sector.
Resumo:
Novel scientific and technological progress require to seek new sources of electricity. Such response is, inter alia, nuclear energy. Nuclear power stations currently produce around a third of the electricity and 14% of the energy consumed in the European Union. A thorough aspect in the use and development of nuclear energy as power source is safety. Nuclear facilities are designed so that the probability of an accident that may affect people and environment was very low. Reasonably, preventive emergency plans take place in the own nuclear facilities in order to mitigate and minimize the consequences, and otherwise another emergency nuclear plans take place outside facilities. Monitoring programs are also conducted in the nearby nuclear facilities, according to the Recommendation reached on 8th June 2000 by the European Commission on the application of Article 36 of the Euratom Treaty for the checking of the levels of radioactivity in the environment, in order to assess the exposure to the whole population. The main objectives of these plans are to check the presence and evolution of radioactive elements and the radiation levels in the environment; to determinate the causes of its increase, if succeed; to estimate the radiological risk to the population; to set corrected measures, if necessary; to ensure legal compliance on the premises and; to verify the suitability of effluent monitoring program to detect radionuclides leaks and transfer to the environment...
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Les ouvrages de transport d’électricité ont d’abord été pensés un par un, reliant un excédent de production à un besoin de consommation. Ils ont ainsi parfois très naturellement et dès l’origine traversé les frontières des États pour répondre à leur raison d’être. Les secteurs électriques se structurant fortement lorsque le virage électrique fut pris, les interconnexions entre pays furent conçues par les techniciens comme une mesure élémentaire de sûreté et d’équilibre de ce produit atypique qu’est l’électricité. En France plus particulièrement, lorsque la production électronucléaire se développa à partir des années 1970, ces interconnexions devinrent petit à petit sources de revenus pour l’entreprise nationale, et d’équilibre pour la balance commerciale nationale. L’intérêt grandissant porté au secteur électrique par les institutions européennes à la fin des années 1990 vient ébranler les acteurs économiques géographiques verticaux, et rebat les cartes des enjeux à adresser à une maille plus large que l’État nation. Dans ces transformations successives, les interconnexions aux frontières, et particulièrement aux frontières françaises, jouent ainsi un rôle tout à fait spécifique et de plus en plus structurant pour les économies ouvertes des pays européens. Les réseaux de transport électriques continuent ainsi une mutation entamée dans les années 1970 qui les a conduits de la condition de mal nécessaire à celle de vecteurs indispensables de transformation des économies européennes. L’objet de ce mémoire est d’illustrer la très grande capacité d’adaptation de ces organes industriels, économiques, sociétaux et politiques, dont on pourrait faussement penser qu’ils sont immobilisés par leur nature capitalistique, à travers les enjeux portés par les interconnexions aux frontières françaises. Les sources sont à la fois issues de données des opérateurs techniques, de la documentation – encore peu fréquente – sur ces sujets, ainsi que des statistiques officielles du ministère français. Cette capacité d’innovation et de développement de « couches de services » permet aujourd’hui aux grands réseaux de transport de traverser les époques et la variabilité des orientations de leurs environnements, durablement.