906 resultados para Lot-sizing and scheduling
Resumo:
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.
Resumo:
This thesis presents SodaBot, a general-purpose software agent user-environment and construction system. Its primary component is the basic software agent --- a computational framework for building agents which is essentially an agent operating system. We also present a new language for programming the basic software agent whose primitives are designed around human-level descriptions of agent activity. Via this programming language, users can easily implement a wide-range of typical software agent applications, e.g. personal on-line assistants and meeting scheduling agents. The SodaBot system has been implemented and tested, and its description comprises the bulk of this thesis.
Resumo:
Two methods of obtaining approximate solutions to the classic General Job-shop Scheduling Program are investigated. The first method is iterative. A sampling of the solution space is used to decide which of a collection of space pruning constraints are consistent with "good" schedules. The selected space pruning constraints are then used to reduce the search space and the sampling is repeated. This approach can be used either to verify whether some set of space pruning constraints can prune with discrimination or to generate solutions directly. Schedules can be represented as trajectories through a Cartesian space. Under the objective criteria of Minimum maximum Lateness family of "good" schedules (trajectories) are geometric neighbors (reside with some "tube") in this space. This second method of generating solutions takes advantage of this adjacency by pruning the space from the outside in thus converging gradually upon this "tube." One the average this methods significantly outperforms an array of the Priority Dispatch rules when the object criteria is that of Minimum Maximum Lateness. It also compares favorably with a recent relaxation procedure.
Resumo:
Malicious software (malware) have significantly increased in terms of number and effectiveness during the past years. Until 2006, such software were mostly used to disrupt network infrastructures or to show coders’ skills. Nowadays, malware constitute a very important source of economical profit, and are very difficult to detect. Thousands of novel variants are released every day, and modern obfuscation techniques are used to ensure that signature-based anti-malware systems are not able to detect such threats. This tendency has also appeared on mobile devices, with Android being the most targeted platform. To counteract this phenomenon, a lot of approaches have been developed by the scientific community that attempt to increase the resilience of anti-malware systems. Most of these approaches rely on machine learning, and have become very popular also in commercial applications. However, attackers are now knowledgeable about these systems, and have started preparing their countermeasures. This has lead to an arms race between attackers and developers. Novel systems are progressively built to tackle the attacks that get more and more sophisticated. For this reason, a necessity grows for the developers to anticipate the attackers’ moves. This means that defense systems should be built proactively, i.e., by introducing some security design principles in their development. The main goal of this work is showing that such proactive approach can be employed on a number of case studies. To do so, I adopted a global methodology that can be divided in two steps. First, understanding what are the vulnerabilities of current state-of-the-art systems (this anticipates the attacker’s moves). Then, developing novel systems that are robust to these attacks, or suggesting research guidelines with which current systems can be improved. This work presents two main case studies, concerning the detection of PDF and Android malware. The idea is showing that a proactive approach can be applied both on the X86 and mobile world. The contributions provided on this two case studies are multifolded. With respect to PDF files, I first develop novel attacks that can empirically and optimally evade current state-of-the-art detectors. Then, I propose possible solutions with which it is possible to increase the robustness of such detectors against known and novel attacks. With respect to the Android case study, I first show how current signature-based tools and academically developed systems are weak against empirical obfuscation attacks, which can be easily employed without particular knowledge of the targeted systems. Then, I examine a possible strategy to build a machine learning detector that is robust against both empirical obfuscation and optimal attacks. Finally, I will show how proactive approaches can be also employed to develop systems that are not aimed at detecting malware, such as mobile fingerprinting systems. In particular, I propose a methodology to build a powerful mobile fingerprinting system, and examine possible attacks with which users might be able to evade it, thus preserving their privacy. To provide the aforementioned contributions, I co-developed (with the cooperation of the researchers at PRALab and Ruhr-Universität Bochum) various systems: a library to perform optimal attacks against machine learning systems (AdversariaLib), a framework for automatically obfuscating Android applications, a system to the robust detection of Javascript malware inside PDF files (LuxOR), a robust machine learning system to the detection of Android malware, and a system to fingerprint mobile devices. I also contributed to develop Android PRAGuard, a dataset containing a lot of empirical obfuscation attacks against the Android platform. Finally, I entirely developed Slayer NEO, an evolution of a previous system to the detection of PDF malware. The results attained by using the aforementioned tools show that it is possible to proactively build systems that predict possible evasion attacks. This suggests that a proactive approach is crucial to build systems that provide concrete security against general and evasion attacks.
Resumo:
This document describes two sets of benchmark problem instances for the job shop scheduling problem. Each set of instances is supplied as a compressed (zipped) archive containing a single CSV file for each problem instance using the format described in http://rollproject.org/jssp/jsspGen.pdf
Resumo:
We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conquer approach in which each heuristic solves a unique subset of the instance set considered. NELLI-GP extends an existing ensemble method called NELLI by introducing a novel heuristic generator that evolves heuristics composed of linear sequences of dispatching rules: each rule is represented using a tree structure and is itself evolved. Following a training period, the ensemble is shown to outperform both existing dispatching rules and a standard genetic programming algorithm on a large set of new test instances. In addition, it obtains superior results on a set of 210 benchmark problems from the literature when compared to two state-of-the-art hyperheuristic approaches. Further analysis of the relationship between heuristics in the evolved ensemble and the instances each solves provides new insights into features that might describe similar instances.
Resumo:
This paper describes an algorithm for scheduling packets in real-time multimedia data streams. Common to these classes of data streams are service constraints in terms of bandwidth and delay. However, it is typical for real-time multimedia streams to tolerate bounded delay variations and, in some cases, finite losses of packets. We have therefore developed a scheduling algorithm that assumes streams have window-constraints on groups of consecutive packet deadlines. A window-constraint defines the number of packet deadlines that can be missed in a window of deadlines for consecutive packets in a stream. Our algorithm, called Dynamic Window-Constrained Scheduling (DWCS), attempts to guarantee no more than x out of a window of y deadlines are missed for consecutive packets in real-time and multimedia streams. Using DWCS, the delay of service to real-time streams is bounded even when the scheduler is overloaded. Moreover, DWCS is capable of ensuring independent delay bounds on streams, while at the same time guaranteeing minimum bandwidth utilizations over tunable and finite windows of time. We show the conditions under which the total demand for link bandwidth by a set of real-time (i.e., window-constrained) streams can exceed 100% and still ensure all window-constraints are met. In fact, we show how it is possible to guarantee worst-case per-stream bandwidth and delay constraints while utilizing all available link capacity. Finally, we show how best-effort packets can be serviced with fast response time, in the presence of window-constrained traffic.
Resumo:
TCP performance degrades when end-to-end connections extend over wireless connections-links which are characterized by high bit error rate and intermittent connectivity. Such link characteristics can significantly degrade TCP performance as the TCP sender assumes wireless losses to be congestion losses resulting in unnecessary congestion control actions. Link errors can be reduced by increasing transmission power, code redundancy (FEC) or number of retransmissions (ARQ). But increasing power costs resources, increasing code redundancy reduces available channel bandwidth and increasing persistency increases end-to-end delay. The paper proposes a TCP optimization through proper tuning of power management, FEC and ARQ in wireless environments (WLAN and WWAN). In particular, we conduct analytical and numerical analysis taking into "wireless-aware" TCP) performance under different settings. Our results show that increasing power, redundancy and/or retransmission levels always improves TCP performance by reducing link-layer losses. However, such improvements are often associated with cost and arbitrary improvement cannot be realized without paying a lot in return. It is therefore important to consider some kind of net utility function that should be optimized, thus maximizing throughput at the least possible cost.
Resumo:
Wireless sensor networks have recently emerged as enablers of important applications such as environmental, chemical and nuclear sensing systems. Such applications have sophisticated spatial-temporal semantics that set them aside from traditional wireless networks. For example, the computation of temperature averaged over the sensor field must take into account local densities. This is crucial since otherwise the estimated average temperature can be biased by over-sampling areas where a lot more sensors exist. Thus, we envision that a fundamental service that a wireless sensor network should provide is that of estimating local densities. In this paper, we propose a lightweight probabilistic density inference protocol, we call DIP, which allows each sensor node to implicitly estimate its neighborhood size without the explicit exchange of node identifiers as in existing density discovery schemes. The theoretical basis of DIP is a probabilistic analysis which gives the relationship between the number of sensor nodes contending in the neighborhood of a node and the level of contention measured by that node. Extensive simulations confirm the premise of DIP: it can provide statistically reliable and accurate estimates of local density at a very low energy cost and constant running time. We demonstrate how applications could be built on top of our DIP-based service by computing density-unbiased statistics from estimated local densities.
Resumo:
Wireless sensor networks are characterized by limited energy resources. To conserve energy, application-specific aggregation (fusion) of data reports from multiple sensors can be beneficial in reducing the amount of data flowing over the network. Furthermore, controlling the topology by scheduling the activity of nodes between active and sleep modes has often been used to uniformly distribute the energy consumption among all nodes by de-synchronizing their activities. We present an integrated analytical model to study the joint performance of in-network aggregation and topology control. We define performance metrics that capture the tradeoffs among delay, energy, and fidelity of the aggregation. Our results indicate that to achieve high fidelity levels under medium to high event reporting load, shorter and fatter aggregation/routing trees (toward the sink) offer the best delay-energy tradeoff as long as topology control is well coordinated with routing.
Resumo:
The design of programs for broadcast disks which incorporate real-time and fault-tolerance requirements is considered. A generalized model for real-time fault-tolerant broadcast disks is defined. It is shown that designing programs for broadcast disks specified in this model is closely related to the scheduling of pinwheel task systems. Some new results in pinwheel scheduling theory are derived, which facilitate the efficient generation of real-time fault-tolerant broadcast disk programs.
Resumo:
The development and deployment of distributed network-aware applications and services over the Internet require the ability to compile and maintain a model of the underlying network resources with respect to (one or more) characteristic properties of interest. To be manageable, such models must be compact, and must enable a representation of properties along temporal, spatial, and measurement resolution dimensions. In this paper, we propose a general framework for the construction of such metric-induced models using end-to-end measurements. We instantiate our approach using one such property, packet loss rates, and present an analytical framework for the characterization of Internet loss topologies. From the perspective of a server the loss topology is a logical tree rooted at the server with clients at its leaves, in which edges represent lossy paths between a pair of internal network nodes. We show how end-to-end unicast packet probing techniques could b e used to (1) infer a loss topology and (2) identify the loss rates of links in an existing loss topology. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. We report on simulation, implementation, and Internet deployment results that show the effectiveness of our approach and its robustness in terms of its accuracy and convergence over a wide range of network conditions.
Resumo:
The initial phase in a content distribution (file sharing) scenario is a delicate phase due to the lack of global knowledge and the dynamics of the overlay. An unwise distribution of the pieces in this phase can cause delays in reaching steady state, thus increasing file download times. We devise a scheduling algorithm at the seed (source peer with full content), based on a proportional fair approach, and we implement it on a real file sharing client [1]. In dynamic overlays, our solution improves up to 25% the average downloading time of a standard protocol ala BitTorrent.
Resumo:
In this paper, we present Slack Stealing Job Admission Control (SSJAC)---a methodology for scheduling periodic firm-deadline tasks with variable resource requirements, subject to controllable Quality of Service (QoS) constraints. In a system that uses Rate Monotonic Scheduling, SSJAC augments the slack stealing algorithm of Thuel et al with an admission control policy to manage the variability in the resource requirements of the periodic tasks. This enables SSJAC to take advantage of the 31\% of utilization that RMS cannot use, as well as any utilization unclaimed by jobs that are not admitted into the system. Using SSJAC, each task in the system is assigned a resource utilization threshold that guarantees the minimal acceptable QoS for that task (expressed as an upper bound on the rate of missed deadlines). Job admission control is used to ensure that (1) only those jobs that will complete by their deadlines are admitted, and (2) tasks do not interfere with each other, thus a job can only monopolize the slack in the system, but not the time guaranteed to jobs of other tasks. We have evaluated SSJAC against RMS and Statistical RMS (SRMS). Ignoring overhead issues, SSJAC consistently provides better performance than RMS in overload, and, in certain conditions, better performance than SRMS. In addition, to evaluate optimality of SSJAC in an absolute sense, we have characterized the performance of SSJAC by comparing it to an inefficient, yet optimal scheduler for task sets with harmonic periods.
Resumo:
In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.