955 resultados para Long Beach Island(New Jersey)
Resumo:
In 2008, the Center for Watershed Protection (CWP) surveyed seventy-three coastal plain communities to determine their current practices and need for watershed planning and low impact development (LID). The survey found that communities had varying watershed planning effectiveness and need better stormwater management, land use planning, and watershed management communication. While technical capacity is improving, stormwater programs are under staffed and innovative site designs may be prohibited under current regulations. In addition, the unique site constraints (e.g., sandy soils, low relief, tidal influence, vulnerability to coastal hazards, etc.) and lack of local examples are common LID obstacles along the coast (Vandiver and Hernandez, 2009). LID stormwater practices are an innovative approach to stormwater management that provide an alternative to structural stormwater practices, reduce runoff, and maintain or restores hydrology. The term LID is typically used to refer to the systematic application of small, distributed practices that replicate pre-development hydrologic functions. Examples of LID practices include: downspout disconnection, rain gardens, bioretention areas, dry wells, and vegetated filter strips. In coastal communities, LID practices have not yet become widely accepted or applied. The geographic focus for the project is the Atlantic and Gulf coastal plain province which includes nearly 250,000 square miles in portions of fifteen states from New Jersey to Texas (Figure 1). This project builds on CWP’s “Coastal Plain Watershed Network: Adapting, Testing, and Transferring Effective Tools to Protect Coastal Plain Watersheds” that developed a coastal land cover model, conducted a coastal plain community needs survey (results are online here: http://www.cwp.org/#survey), created a coastal watershed Network, and adapted the 8 Tools for Watershed Protection Framework for coastal areas. (PDF contains 4 pages)
Resumo:
Science Cafes present a casual meeting place where people who may have little or no science background can learn about a current scientific topic in an informal and friendly environment. The coffee shop setting is designed to be inviting and informal so that students, faculty, and community members can feel comfortable and engage in lively and meaningful conversations. The café is organized around an interesting scientific topic with a brief presentation by a scientist and may include a short video clip. A Science Café can (1) provide an opportunity and venue for increasing science literacy, (2) publicize local scientific endeavors, and (3) identify the library as an epicenter of informal education on the campus and in the community. This presentation will describe the development of the Science Café at the University of Southern Mississippi Gulf Coast campus Library in Long Beach and plans for future cafes on the Mississippi coast.
Resumo:
Theoretical and experimental studies were conducted to investigate the wave induced oscillations in an arbitrary shaped harbor with constant depth which is connected to the open-sea.
A theory termed the “arbitrary shaped harbor” theory is developed. The solution of the Helmholtz equation, ∇2f + k2f = 0, is formulated as an integral equation; an approximate method is employed to solve the integral equation by converting it to a matrix equation. The final solution is obtained by equating, at the harbor entrance, the wave amplitude and its normal derivative obtained from the solutions for the regions outside and inside the harbor.
Two special theories called the circular harbor theory and the rectangular harbor theory are also developed. The coordinates inside a circular and a rectangular harbor are separable; therefore, the solution for the region inside these harbors is obtained by the method of separation of variables. For the solution in the open-sea region, the same method is used as that employed for the arbitrary shaped harbor theory. The final solution is also obtained by a matching procedure similar to that used for the arbitrary shaped harbor theory. These two special theories provide a useful analytical check on the arbitrary shaped harbor theory.
Experiments were conducted to verify the theories in a wave basin 15 ft wide by 31 ft long with an effective system of wave energy dissipators mounted along the boundary to simulate the open-sea condition.
Four harbors were investigated theoretically and experimentally: circular harbors with a 10° opening and a 60° opening, a rectangular harbor, and a model of the East and West Basins of Long Beach Harbor located in Long Beach, California.
Theoretical solutions for these four harbors using the arbitrary shaped harbor theory were obtained. In addition, the theoretical solutions for the circular harbors and the rectangular harbor using the two special theories were also obtained. In each case, the theories have proven to agree well with the experimental data.
It is found that: (1) the resonant frequencies for a specific harbor are predicted correctly by the theory, although the amplification factors at resonance are somewhat larger than those found experimentally,(2) for the circular harbors, as the width of the harbor entrance increases, the amplification at resonance decreases, but the wave number bandwidth at resonance increases, (3) each peak in the curve of entrance velocity vs incident wave period corresponds to a distinct mode of resonant oscillation inside the harbor, thus the velocity at the harbor entrance appears to be a good indicator for resonance in harbors of complicated shape, (4) the results show that the present theory can be applied with confidence to prototype harbors with relatively uniform depth and reflective interior boundaries.
Resumo:
This paper summarizes current information on the American shad, Alosa sapidissima, and describes the species and its fishery. Emphasis is placed on (1) life history of the fish, (2) condition of the fishery by State and water areas in 1960 compared to 1896 when the last comprehensive description was made, (3) factors responsible for decline in abundance, and (4) management measures. The shad fishery has changed little over the past three-quarters of a century, except in magnitude of yield. Types of shad-fishing gear have remained relatively unchanged, but many improvements have been made in fishing techniques, mostly to achieve economy. In 1896 the estimated catch was more than 50 million pounds. New Jersey ranked first in production with about 14 million pounds, and Virginia second with 11 million pounds. In 1960 the estimated catch was slightly more than 8 million pounds. Maryland ranked first in production with slightly more than 1.5 million pounds, Virginia second with slightly less than 1.4 million pounds, and North Carolina third with about 1.3 million pounds. Biological and economic factors blamed for the decline in shad abundance, such as physical changes in the environment, construction of dams, pollution, over-fishing, and natural cycles of abundance, are discussed. Also discussed are methods used for the rehabilitation and management of the fishery, such as artificial propagation, installation of fish-passage facilities at impoundments, and fishing regulations. With our present knowledge, we can manage individual shad populations; but, we probably cannot restore the shad to its former peak of abundance.
Resumo:
Distribution, movements, and habitat use of small (<46 cm, juveniles and individuals of unknown maturity) striped bass (Morone saxatilis) were investigated with multiple techniques and at multiple spatial scales (surveys and tag-recapture in the estuary and ocean, and telemetry in the estuary) over multiple years to determine the frequency and duration of use of non-natal estuaries. These unique comparisons suggest, at least in New Jersey, that smaller individuals (<20 cm) may disperse from natal estuaries and arrive in non-natal estuaries early in life and take up residence for several years. During this period of estuarine residence, individuals spend all seasons primarily in the low salinity portions of the estuary. At larger sizes, they then leave these non-natal estuaries to begin coastal migrations with those individuals from nurseries in natal estuaries. These composite observations of frequency and duration of habitat use indicate that non-natal estuaries may provide important habitat for a portion of the striped bass population.
Resumo:
Abstract—In the first of two companion papers, a 54-yr time series for the oyster population in the New Jersey waters of Delaware Bay was analyzed to develop biological relationships necessary to evaluate maximum sustainable yield (MSY) reference points and to consider how multiple stable points affect reference point-based management. The time series encompassed two regime shifts, one circa 1970 that ushered in a 15-yr period of high abundance, and a second in 1985 that ushered in a 20-yr period of low abundance. The intervening and succeeding periods have the attributes of alternate stable states. The biological relationships between abundance, recruitment, and mortality were unusual in four ways. First, the broodstock–recruitment relationship at low abundance may have been driven more by the provision of settlement sites for larvae by the adults than by fecundity. Second, the natural mortality rate was temporally unstable and bore a nonlinear relationship to abundance. Third, combined high abundance and low mortality, though likely requiring favorable environmental conditions, seemed also to be a self-reinforcing phenomenon. As a consequence, the abundance –mortality relationship exhibited both compensatory and depensatory components. Fourth, the geographic distribution of the stock was intertwined with abundance and mortality, such that interrelationships were functions both of spatial organization and inherent populatio
Resumo:
In the second of two companion articles, a 54-year time series for the oyster population in the New Jersey waters of Delaware Bay is analyzed to examine how the presence of multiple stable states affects reference-point–based management. Multiple stable states are described by four types of reference points. Type I is the carrying capacity for the stable state: each has associated with it a type-II reference point wherein surplus production reaches a local maximum. Type-II reference points are separated by an intermediate surplus production low (type III). Two stable states establish a type-IV reference point, a point-of-no-return that impedes recovery to the higher stable state. The type-II to type-III differential in surplus production is a measure of the difficulty of rebuilding the population and the sensitivity of the population to collapse at high abundance. Surplus production projections show that the abundances defining the four types of reference points are relatively stable over a wide range of uncertainties in recruitment and mortality rates. The surplus production values associated with type-II and type-III reference points are much more uncertain. Thus, biomass goals are more easily established than fishing mortality rates for oyster population
Resumo:
To determine if shoreface sand ridges provide unique habitats for fish on the inner continental shelf, two cross-shelf trawl surveys (23 km in length) were conducted in southern New Jersey (July and September 1991−95 with a beam trawl and July and September 1997−06 with an otter trawl) to assess whether species abundance, richness, and assemblages differed on and away from the ridge. The dominant species collected with both gears were from the families Paralichthyidae, Triglidae, Gobiidae, Serranidae, Engraulidae, Stromateidae, and Sciaenidae. Overall abundance (n=41,451 individuals) and species richness (n=61 species) were distributed bimodally across the nearshore to offshore transect, and the highest values were found on either side of the sand ridge regardless of gear type. Canonical correspondence analysis revealed three species assemblages: inshore (<5 meters depth), near-ridge (9−14 meters depth), and offshore (>14 meters depth), and variation in species composition between gear types. Environmental factors that corresponded with the assemblage changes included depth, temperature, distance from the top of the ridge, and habitat complexity. The most abundant near-ridge assemblages were distinct and included economically important species. Sand ridges of the inner continental shelf appear to be important habitat for a number of fish species and therefore may not be a suitable area for sand and gravel mining.
Resumo:
Estimates of the abundance of American horseshoe crabs (Limulus polyphemus) are important to determine egg production and to manage populations for the energetic needs of shorebirds that feed on horseshoe crab eggs. In 2003, over 17,500 horseshoe crabs were tagged and released throughout Delaware Bay, and recaptured crabs came from spawning surveys that were conducted during peak spawning. We used two release cohorts to test for a temporary effect of tagging on spawning behavior and we adjusted the number of releases according to relocation rates from a telemetry study. The abundance estimate was 20 million horseshoe crabs (90 % confidence interval: 13−28 million), of which 6.25 million (90% CI: 4.0−8.8 million) were females. The combined harvest rate for Delaware, New Jersey, Virginia, and Maryland in 2003 was 4% (90% CI: 3−6%) of the abundance estimate. Over-wintering of adults in Delaware Bay could explain, in part, differences in estimates from ocean-trawl surveys. Based on fecundity of 88,000 eggs per female, egg production was 5.5×1011 (90% CI: 3.5×1011, 7.7×1011), but egg availability for shorebirds also depended on overlap between horseshoe crab and shorebird migrations, density-dependent bioturbation, and wave-mediated vertical transport.
Resumo:
Over a century of fi shery and oceanographic research conducted along the Atlantic coast of the United States has resulted in many publications using unofficial, and therefore unclear, geographic names for certain study areas. Such improper usage, besides being unscholarly, has and can lead to identification problems for readers unfamiliar with the area. Even worse, the use of electronic data bases and search engines can provide incomplete or confusing references when improper wording is used. The two terms used improperly most often are “Middle Atlantic Bight” and “South Atlantic Bight.” In general, the term “Middle Atlantic Bight” usually refers to an imprecise coastal area off the middle Atlantic states of New York, New Jersey, Delaware, Maryland, and Virginia, and the term “South Atlantic Bight” refers to the area off the southeastern states of North Carolina, South Carolina, Georgia, and Florida’s east coast.
Resumo:
The National Marine Fisheries Service (NMFS) Cooperative Shark Tagging Program (CSTP) is part of continuing research directed to the study of the biology of large Atlantic sharks. The CSTP was initiated in 1962 at the Sandy Hook Laboratory in New Jersey under the Department of Interior's U.S. Fish and Wildlife Service (USFWS). During the late 1950's and early 1960's, sharks were considered a liability to the economy of resort communities, of little or no commercial value, and a detriment to fishermen in areas where sharks might damage expensive fishing gear or reduce catches of more commercially valuable species.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.