915 resultados para Logistic regression model
Resumo:
The study objectives were to determine risk factors for preterm labor (PTL) in Colorado Springs, CO, with emphasis on altitude and psychosocial factors, and to develop a model that identifies women at high risk for PTL. Three hundred and thirty patients with PTL were matched to 460 control patients without PTL using insurance category as an indirect measure of social class. Data were gathered by patient interview and review of medical records. Seven risk groups were compared: (1) Altitude change and travel; (2) Psychosocial ((a) child, sexual, spouse, alcohol and drug abuse; (b) neuroses and psychoses; (c) serious accidents and injuries; (d) broken home (maternal parental separation); (e) assault (physical and sexual); and (f) stress (emotional, domestic, occupational, financial and general)); (3) demographic; (4) maternal physical condition; (5) Prenatal care; (6) Behavioral risks; and (7) Medical factors. Analysis was by logistic regression. Results demonstrated altitude change before or after conception and travel during pregnancy to be non-significant, even after adjustment for potential confounding variables. Five significant psychosocial risk factors were determined: Maternal sex abuse (p = 0.006), physical assault (p = 0.025), nervous breakdown (p = 0.011), past occupational injury (p = 0.016), and occupational stress (p = 0.028). Considering all seven risk groups in the logistic regression, we chose a logistic model with 11 risk factors. Two risk factors were psychosocial (maternal spouse abuse and past occupational injury), 1 was pertinent to maternal physical condition ($\le$130 lbs. pre-pregnancy weight), 1 to prenatal care ($\le$10 prenatal care visits), 2 pertinent to behavioral risks ($>$15 cigarettes per day and $\le$30 lbs. weight gain) and 5 medical factors (abnormal genital culture, previous PTB, primiparity, vaginal bleeding and vaginal discharge). We conclude that altitude change is not a risk factor for PTL and that selected psychosocial factors are significant risk factors for PTL. ^
Resumo:
Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^
Resumo:
In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^
Resumo:
Nursing home literature links poor management practices to poor quality of care and resident outcomes. Since Nursing Home Administrators (NHAs) require an array of skills to perform their role, it is important to explore what makes a NHA effective. This research fills a gap in the literature and provides a possible option to improve the quality of care in nursing homes. Purpose of the study. The study examines whether NHAs with advanced education (defined as a Masters degree or more) are associated with better quality of care in licensed nursing homes (NHs). Design and Methods. Data was derived from the CDC’s 2004 National Nursing Home Survey, which is a representative sample of NHs across the US. A Donabedian- inspired structure-process-outcomes study model was created to explain how education relates to quality of care. Quality of care was defined as onsite oral care, employee influenza vaccination rates and staff recognition programs. Statistical analyses included multivariate logistic regression; covariates included facility-level variables used in similar peer-reviewed research but also included select measures from the Area Resource File to control for county-level factors. Results. Descriptive and analytical analyses confirm that NHAs with a Bachelor’s degree, Associate degree or high school diploma perform less well than NHAs with a Masters degree or more. NHAs with advanced education are more likely to have onsite dental care and recognition programs for staff than NHAs with a Bachelor’s degree (or less). Also NHAs with less than graduate education are more likely to provide off-site dental care. Employee vaccination rates are not impacted by education. Adding certification, tenure or years of experience to a NHA with advanced education gives them an advantage. In fact, certification and experience alone do not have a positive relationship to care indicators; however adding these to advanced education produces a significant result. Implications. This research provides preliminary evidence that advanced education for the NHA is associated with better quality of care. If future research can confirm these findings, there is merit in revisiting the qualifications. Education can be a legitimate option to support quality improvement efforts in US nursing homes. ^
Resumo:
Objectives: To compare mental health care utilization regarding the source, types, and intensity of mental health services received, unmet need for services, and out of pocket cost among non-institutionalized psychologically distressed women and men. ^ Method: Cross-sectional data for 19,325 non-institutionalized mentally distressed adult respondents to the “The National Survey on Drug Use and Health” (NSDUH), for the years 2006 -2008, representing over twenty-nine millions U.S. adults was analyzed. To assess the relative odds for women compared to men, logistic regression analysis was used for source of service, for types of barriers, for unmet need and cost; zero inflated negative binomial regression for intensity of utilization; and ordinal logistic regression analysis for quantifying out-of-pocket expenditure. ^ Results: Overall, 43% of mentally distressed adults utilized a form of mental health treatment; representing 12.6 million U.S psychologically distressed adults. Females utilized more mental health care compared to males in the previous 12 months (OR: 1. 70; 95% CI: 1.54, 1.83). Similarly, females were 54% more likely to get help for psychological distress in an outpatient setting and females were associated with an increased probability of using medication for mental distress (OR: 1.72; 95% CI: 1.63, 1.98). Women were 1.25 times likelier to visit a mental health center (specialty care) than men. ^ Females were positively associated with unmet needs (OR: 1.50; 95% CI: 1.29, 1.75) after taking into account predisposing, enabling, and need (PEN) characteristics. Women with perceived unmet needs were 23% (OR: 0.77; 95% CI: 0.59, 0.99) less likely than men to report societal accommodation (stigma) as a barrier to mental health care. At any given cutoff point, women were 1.74 times likelier to be in the higher payment categories for inpatient out of pocket cost when other variables in the model are held constant. Conclusions: Women utilize more specialty mental healthcare, report more unmet need, and pay more inpatient out of pocket costs than men. These gender disparities exist even after controlling for predisposing, enabling, and need variables. Creating policies that not only provide mental health care access but also de-stigmatize mental illness will bring us one step closer to eliminating gender disparities in mental health care.^
Resumo:
Sepsis is a significant cause for multiple organ failure and death in the burn patient, yet identification in this population is confounded by chronic hypermetabolism and impaired immune function. The purpose of this study was twofold: 1) determine the ability of the systemic inflammatory response syndrome (SIRS) and American Burn Association (ABA) criteria to predict sepsis in the burn patient; and 2) develop a model representing the best combination of clinical predictors associated with sepsis in the same population. A retrospective, case-controlled, within-patient comparison of burn patients admitted to a single intensive care unit (ICU) was conducted for the period January 2005 to September 2010. Blood culture results were paired with clinical condition: "positive-sick"; "negative-sick", and "screening-not sick". Data were collected for the 72 hours prior to each blood culture. The most significant predictors were evaluated using logistic regression, Generalized Estimating Equations (GEE) and ROC area under the curve (AUC) analyses to assess model predictive ability. Bootstrapping methods were employed to evaluate potential model over-fitting. Fifty-nine subjects were included, representing 177 culture periods. SIRS criteria were not found to be associated with culture type, with an average of 98% of subjects meeting criteria in the 3 days prior. ABA sepsis criteria were significantly different among culture type only on the day prior (p = 0.004). The variables identified for the model included: heart rate>130 beats/min, mean blood pressure<60 mmHg, base deficit<-6 mEq/L, temperature>36°C, use of vasoactive medications, and glucose>150 mg/d1. The model was significant in predicting "positive culture-sick" and sepsis state, with AUC of 0.775 (p < 0.001) and 0.714 (p < .001), respectively; comparatively, the ABA criteria AUC was 0.619 (p = 0.028) and 0.597 (p = .035), respectively. SIRS criteria are not appropriate for identifying sepsis in the burn population. The ABA criteria perform better, but only for the day prior to positive blood culture results. The time period useful to diagnose sepsis using clinical criteria may be limited to 24 hours. A combination of predictors is superior to individual variable trends, yet algorithms or computer support will be necessary for the clinician to find such models useful. ^
Resumo:
Preventable Hospitalizations (PHs) are hospitalizations that can be avoided with appropriate and timely care in the ambulatory setting and hence are closely associated with primary care access in a community. Increased primary care availability and health insurance coverage may increase primary care access, and consequently may be significantly associated with risks and costs of PHs. Objective. To estimate the risk and cost of preventable hospitalizations (PHs); to determine the association of primary care availability and health insurance coverage with the risk and costs of PHs, first alone and then simultaneously; and finally, to estimate the impact of expansions in primary care availability and health insurance coverage on the burden of PHs among non-elderly adult residents of Harris County. Methods. The study population was residents of Harris County, age 18 to 64, who had at least one hospital discharge in a Texas hospital in 2008. The primary independent variables were availability of primary care physicians, availability of primary care safety net clinics and health insurance coverage. The primary dependent variables were PHs and associated hospitalization costs. The Texas Health Care Information Collection (THCIC) Inpatient Discharge data was used to obtain information on the number and costs of PHs in the study population. Risk of PHs in the study population, as well as average and total costs of PHs were calculated. Multivariable logistic regression models and two-step Heckman regression models with log-transformed costs were used to determine the association of primary care availability and health insurance coverage with the risk and costs of PHs respectively, while controlling for individual predisposing, enabling and need characteristics. Predicted PH risk and cost were used to calculate the predicted burden of PHs in the study population and the impact of expansions in primary care availability and health insurance coverage on the predicted burden. Results. In 2008, hospitalized non-elderly adults in Harris County had 11,313 PHs and a corresponding PH risk of 8.02%. Congestive heart failure was the most common PH. PHs imposed a total economic burden of $84 billion at an average of $7,449 per PH. Higher primary care safety net availability was significantly associated with the lower risk of PHs in the final risk model, but only in the uninsured. A unit increase in safety net availability led to a 23% decline in PH odds in the uninsured, compared to only a 4% decline in the insured. Higher primary care physician availability was associated with increased PH costs in the final cost model (β=0.0020; p<0.05). Lack of health insurance coverage increased the risk of PH, with the uninsured having 30% higher odds of PHs (OR=1.299; p<0.05), but reduced the cost of a PH by 7% (β=-0.0668; p<0.05). Expansions in primary care availability and health insurance coverage were associated with a reduction of about $1.6 million in PH burden at the highest level of expansion. Conclusions. Availability of primary care resources and health insurance coverage in hospitalized non-elderly adults in Harris County are significantly associated with the risk and costs of PHs. Expansions in these primary care access factors can be expected to produce significant reductions in the burden of PHs in Harris County.^
Resumo:
Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is the third most preventable cardiovascular disease and a growing public health problem in the United States. The incidence of VTE remains high with an annual estimate of more than 600,000 symptomatic events. DVT affects an estimated 2 million American each year with a death toll of 300,000 persons per year from DVT-related PE. Leukemia patients are at high risk for both hemorrhage and thrombosis; however, little is known about thrombosis among acute leukemia patients. The ultimate goal of this dissertation was to obtain deep understanding of thrombotic issue among acute leukemia patients. The dissertation was presented in a format of three papers. First paper mainly looked at distribution and risk factors associated with development of VTE among patients with acute leukemia prior to leukemia treatment. Second paper looked at incidence, risk factors, and impact of VTE on survival of patients with acute lymphoblastic leukemia during treatment. Third paper looked at recurrence and risk factors for VTE recurrence among acute leukemia patients with an initial episode of VTE. Descriptive statistics, Chi-squared or Fisher's exact test, median test, Mann-Whitney test, logistic regression analysis, Nonparametric Estimation Kaplan-Meier with a log-rank test or Cox model were used when appropriate. Results from analyses indicated that acute leukemia patients had a high prevalence, incidence, and recurrent rate of VTE. Prior history of VTE, obesity, older age, low platelet account, presence of Philadelphia positive ALL, use of oral contraceptives or hormone replacement therapy, presence of malignancies, and co-morbidities may place leukemia patients at an increased risk for VTE development or recurrence. Interestingly, development of VTE was not associated with a higher risk of death among hospitalized acute leukemia patients.^
Resumo:
Rabies remains a significant problem in much of the developed world, where canine rabies is not well controlled, and the bite of an infected dog is the most common means of transmission. The Philippines continues to report several hundred cases of human rabies every year, and many more cases go undetected. In recent years, the province of Bohol has been targeted by the Philippine government and the World Health Organization for a rabies eradication program. ^ The primary objective of this dissertation research was to describe factors associated with dog vaccination coverage and knowledge, attitudes, and practices regarding rabies among households in Bohol, Philippines. Utilizing a cross-sectional cluster survey design, we sampled 460 households and 541 dogs residing within dog-owning households. ^ Multivariate linear regression was used to examine potential associations between knowledge, attitudes, and practices (KAPs) and variables of interest. Forty-six percent of households knew that rabies was spread through the bite of an infected dog. The mean knowledge score was 8.36 (SD: ± 3.4; range: 1–24). We found that having known someone with rabies was significantly associated with an almost one point increase in the knowledge score (β = 0.88; p = 0.02). The mean attitudes score was 5.65 (SD: ± 0.63; range: 2–6), and the mean practices score was 7.07 (SD: ± 1.7; range: 2–9). Both the attitudes score and the practices score were positively and significantly associated with only the knowledge score and no other covariates. ^ Multivariate logistic regression was used to examine associations between dog vaccination coverage and variables of interest. Approximately 71% of owned dogs in Bohol were reported as vaccinated at some time during their lives. We found that a dog's age was significantly associated with vaccination, and the odds of vaccination increased in a linear fashion with age. We also found that dogs had approximately twice the odds of being vaccinated if they were confined both day and night to the household premises or if the owner was employed; however, these results were only marginally significant (p = 0.07) in the multivariate model. ^ Finally, a systematic review was conducted on canine rabies vaccination and dog population demographics in the developing world. We found few studies on this topic, especially in countries where the burden of rabies is greatest. Overall, dog ownership is high. Dogs are quite young and do not live very long due to disease and accidents. The biggest deterrent to vaccination is the rapid dog population turnover. ^ It is our hope that this work will be used to improve dog rabies vaccination programs around the world and save lives, both human and canine.^
Resumo:
Background: Overall objectives of this dissertation are to examine the geographic variation and socio-demographic disparities (by age, race and gender) in the utilization and survival of newly FDA-approved chemotherapy agents (Oxaliplatin-containing regimens) as well as to determine the cost-effectiveness of Oxaliplatin in a large nationwide and population-based cohort of Medicare patients with resected stage-III colon cancer. Methods: A retrospective cohort of 7,654 Medicare patients was identified from the Surveillance, Epidemiology and End Results – Medicare linked database. Multiple logistic regression was performed to examine the relationship between receipt of Oxaliplatin-containing chemotherapy and geographic regions while adjusting for other patient characteristics. Cox proportional hazard model was used to estimate the effect of Oxaliplatin-containing chemotherapy on the survival variation across regions using 2004-2005 data. Propensity score adjustments were also made to control for potential bias related to non-random allocation of the treatment group. We used Kaplan-Meier sample average estimator to calculate the cost of disease after cancer-specific surgery to death, loss-to follow-up or censorship. Results: Only 51% of the stage-III patients received adjuvant chemotherapy within three to six months of colon-cancer specific surgery. Patients in the rural regions were approximately 30% less likely to receive Oxaliplatin chemotherapy than those residing in a big metro region (OR=0.69, p=0.033). The hazard ratio for patients residing in metro region was comparable to those residing in big metro region (HR: 1.05, 95% CI: 0.49-2.28). Patients who received Oxalipaltin chemotherapy were 33% less likely to die than those received 5-FU only chemotherapy (adjusted HR=0.67, 95% CI: 0.41-1.11). KMSA-adjusted mean payments were almost 2.5 times higher in the Oxaliplatin-containing group compared to 5-FU only group ($45,378 versus $17,856). When compared to no chemotherapy group, ICER of 5-FU based regimen was $12,767 per LYG, and ICER of Oxaliplatin-chemotherapy was $60,863 per LYG. Oxaliplatin was found economically dominated by 5-FU only chemotherapy in this study population. Conclusion: Chemotherapy use varies across geographic regions. We also observed considerable survival differences across geographic regions; the difference remained even after adjusting for socio-demographic characteristics. The cost-effectiveness of Oxaliplatin in Medicare patients may be over-estimated in the clinical trials. Our study found 5-FU only chemotherapy cost-effective in adjuvant settings in patients with stage-III colon cancer.^
Resumo:
Objective: The objective of this study is to investigate the association between processed and unprocessed red meat consumption and prostate cancer (PCa) stage in a homogenous Mexican-American population. Methods: This population-based case-control study had a total of 582 participants (287 cases with histologically confirmed adenocarcinoma of the prostate gland and 295 age and ethnicity-matched controls) that were all residing in the Southeast region of Texas from 1998 to 2006. All questionnaire information was collected using a validated data collection instrument. Statistical Analysis: Descriptive analyses included Student's t-test and Pearson's Chi-square tests. Odds ratios and 95% confidence intervals were calculated to quantify the association between nutritional factors and PCa stage. A multivariable model was used for unconditional logistic regression. Results: After adjusting for relevant covariates, those who consume high amounts of processed red meat have a non-significant increased odds of being diagnosed with localized PCa (OR = 1.60 95% CI: 0.85 - 3.03) and total PCa (OR = 1.43 95% CI: 0.81 - 2.52) but not for advanced PCa (OR = 0.91 95% CI: 1.37 - 2.23). Interestingly, high consumption of carbohydrates shows a significant reduction in the odds of being diagnosed with total PCa and advanced PCa (OR = 0.43 95% CI: 0.24 - 0.77; OR = 0.27 95% CI: 0.10 - 0.71, respectively). However, consuming high amounts of energy from protein and fat was shown to increase the odds of being diagnosed with advanced PCa (OR = 4.62 95% CI: 1.69 - 12.59; OR = 2.61 95% CI: 1.04 - 6.58, respectively). Conclusion: Mexican-Americans who consume high amounts of energy from protein and fat had increased odds of being diagnosed with advanced PCa, while high amounts of carbohydrates reduced the odds of being diagnosed with total and advanced PCa.^
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.
Resumo:
Maximizing data quality may be especially difficult in trauma-related clinical research. Strategies are needed to improve data quality and assess the impact of data quality on clinical predictive models. This study had two objectives. The first was to compare missing data between two multi-center trauma transfusion studies: a retrospective study (RS) using medical chart data with minimal data quality review and the PRospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study with standardized quality assurance. The second objective was to assess the impact of missing data on clinical prediction algorithms by evaluating blood transfusion prediction models using PROMMTT data. RS (2005-06) and PROMMTT (2009-10) investigated trauma patients receiving ≥ 1 unit of red blood cells (RBC) from ten Level I trauma centers. Missing data were compared for 33 variables collected in both studies using mixed effects logistic regression (including random intercepts for study site). Massive transfusion (MT) patients received ≥ 10 RBC units within 24h of admission. Correct classification percentages for three MT prediction models were evaluated using complete case analysis and multiple imputation based on the multivariate normal distribution. A sensitivity analysis for missing data was conducted to estimate the upper and lower bounds of correct classification using assumptions about missing data under best and worst case scenarios. Most variables (17/33=52%) had <1% missing data in RS and PROMMTT. Of the remaining variables, 50% demonstrated less missingness in PROMMTT, 25% had less missingness in RS, and 25% were similar between studies. Missing percentages for MT prediction variables in PROMMTT ranged from 2.2% (heart rate) to 45% (respiratory rate). For variables missing >1%, study site was associated with missingness (all p≤0.021). Survival time predicted missingness for 50% of RS and 60% of PROMMTT variables. MT models complete case proportions ranged from 41% to 88%. Complete case analysis and multiple imputation demonstrated similar correct classification results. Sensitivity analysis upper-lower bound ranges for the three MT models were 59-63%, 36-46%, and 46-58%. Prospective collection of ten-fold more variables with data quality assurance reduced overall missing data. Study site and patient survival were associated with missingness, suggesting that data were not missing completely at random, and complete case analysis may lead to biased results. Evaluating clinical prediction model accuracy may be misleading in the presence of missing data, especially with many predictor variables. The proposed sensitivity analysis estimating correct classification under upper (best case scenario)/lower (worst case scenario) bounds may be more informative than multiple imputation, which provided results similar to complete case analysis.^
Resumo:
Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth common malignancy in the world, with high rates of developing second primary malignancy (SPM) and moderately low survival rates. This disease has become an enormous challenge in the cancer research and treatments. For HNSCC patients, a highly significant cause of post-treatment mortality and morbidity is the development of SPM. Hence, assessment of predicting the risk for the development of SPM would be very helpful for patients, clinicians and policy makers to estimate the survival of patients with HNSCC. In this study, we built a prognostic model to predict the risk of developing SPM in patients with newly diagnosed HNSCC. The dataset used in this research was obtained from The University of Texas MD Anderson Cancer Center. For the first aim, we used stepwise logistic regression to identify the prognostic factors for the development of SPM. Our final model contained cancer site and overall cancer stage as our risk factors for SPM. The Hosmer-Lemeshow test (p-value= 0.15>0.05) showed the final prognostic model fit the data well. The area under the ROC curve was 0.72 that suggested the discrimination ability of our model was acceptable. The internal validation confirmed the prognostic model was a good fit and the final prognostic model would not over optimistically predict the risk of SPM. This model needs external validation by using large data sample size before it can be generalized to predict SPM risk for other HNSCC patients. For the second aim, we utilized a multistate survival analysis approach to estimate the probability of death for HNSCC patients taking into consideration of the possibility of SPM. Patients without SPM were associated with longer survival. These findings suggest that the development of SPM could be a predictor of survival rates among the patients with HNSCC.^
Resumo:
The objectives of this dissertation were to evaluate health outcomes, quality improvement measures, and the long-term cost-effectiveness and impact on diabetes-related microvascular and macrovascular complications of a community health worker-led culturally tailored diabetes education and management intervention provided to uninsured Mexican Americans in an urban faith-based clinic. A prospective, randomized controlled repeated measures design was employed to compare the intervention effects between: (1) an intervention group (n=90) that participated in the Community Diabetes Education (CoDE) program along with usual medical care; and (2) a wait-listed comparison group (n=90) that received only usual medical care. Changes in hemoglobin A1c (HbA1c) and secondary outcomes (lipid status, blood pressure and body mass index) were assessed using linear mixed-models and an intention-to-treat approach. The CoDE group experienced greater reduction in HbA1c (-1.6%, p<.001) than the control group (-.9%, p<.001) over the 12 month study period. After adjusting for group-by-time interaction, antidiabetic medication use at baseline, changes made to the antidiabetic regime over the study period, duration of diabetes and baseline HbA1c, a statistically significant intervention effect on HbA1c (-.7%, p=.02) was observed for CoDE participants. Process and outcome quality measures were evaluated using multiple mixed-effects logistic regression models. Assessment of quality indicators revealed that the CoDE intervention group was significantly more likely to have received a dilated retinal examination than the control group, and 53% achieved a HbA1c below 7% compared with 38% of control group subjects. Long-term cost-effectiveness and impact on diabetes-related health outcomes were estimated through simulation modeling using the rigorously validated Archimedes Model. Over a 20 year time horizon, CoDE participants were forecasted to have less proliferative diabetic retinopathy, fewer foot ulcers, and reduced numbers of foot amputations than control group subjects who received usual medical care. An incremental cost-effectiveness ratio of $355 per quality-adjusted life-year gained was estimated for CoDE intervention participants over the same time period. The results from the three areas of program evaluation: impact on short-term health outcomes, quantification of improvement in quality of diabetes care, and projection of long-term cost-effectiveness and impact on diabetes-related health outcomes provide evidence that a community health worker can be a valuable resource to reduce diabetes disparities for uninsured Mexican Americans. This evidence supports formal integration of community health workers as members of the diabetes care team.^