997 resultados para Locally Compact Spaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coplanar wave guide is an attractive device in microwave integrated circuits due to its uniplanar nature, ease of fabrication and low production cost. Several attempts are already done to explore the radiating modes in coplanar wave guide transmission lines. Usually coplanar wave guides are excited by an SMA connector with its centre conductor connected to the exact middle of the centre strip and the outer ground conductor to the two ground strips. The mode excited on it is purely a bound mode. The E-field distribution in the two slots are out of phase and there for cancels at the far field. This thesis addresses an attempt to excite an in phase E-field distribution in the two slots of the co planar wave guide by employing a feed asymmetry, in order to get radiation from the two large slot discontinuities of the coplanar waveguide. The omni directional distribution of the radiating energy can be achieved by widening the centre strip.The first part of the thesis deals with the investigations on the resonance phenomena of conventional coplanar waveguides at higher frequency bands. Then an offset fed open circuited coplanar waveguide supporting resonance/radiation phenomena is analyzed. Finally, a novel compact co planar antenna geometry with dual band characteristics, suitable for mobile terminal applications is designed and characterized using the inferences from the above study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of the characteristics of planar loop resonators and their use in the construction of filters at microwave frequencies are presented in this thesis.A detailed investigation of parameters affecting the strength of coupling and the resonant frequency are also carried out .Techniques for size reduction in bandstop and bandpass filters using planar loop resonators are developed.Different configurations of bandstop and bandpass filters using loop resonators are simulated and experimental results on optimal filter configurations are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymmetric coplanar strip-fed uniplanar antenna for wideband applications is presented. The resulting antenna offers a 2:1 VSWR bandwidth greater than 100% from 1.58 to 5.48 GHz covering the DCS/PCS/IEEE 802.11a/WiMAX bands. The antenna has an overall dimension of 44 × 35 mm2 when printed on a substrate of dielectric constant 4.4 and height 1.6 mm. The design equation is also presented in this article. The antenna exhibits good radiation characteristics and moderate gain in the entire operating band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact, dual band coplanar waveguide fed modified T-shaped uniplanar antenna is presented. The antenna has resonances at 1.77 and 5.54 GHz with a wide band from 1.47–1.97 GHz and from 5.13–6.48 GHz with an impedance bandwidth of 34% and 26%, respectively. Also the antenna has an average gain of 3 dBi in lower band and 3.5 dBi in higher band with an average efficiency of 90%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design of a compact dual frequency microstrip antenna is presented. The structure consists of a slotted circular patch with a dielectric superstrate. The superstrate,not only acts as a radome, but improves the bandwidth and lowers the resonant frequency also. The proposed design provides an overall size reduction of about 60% compared to an unslotted patch along with good efficiency,gain and bandwidth. The polarization planes at the two resonances are orthogonal and can be simultaneously excited using a coaxial feed. Parametric study of this configuration showed that the frequency ratio of the two resonances can be varied from 1.17 to 1.7 enabling its applications in the major wireless communication bands like AWS, DECT,PHS,Wi.Bro, ISM,and DMB. Design equations are also deduced for the proposed antenna and validated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact dual-band uniplanar antenna for operation in the 2.4/5.2/5.8 GHz WLAN/HIPERLAN2 communication bands is presented. The dual-band antenna is obtained by modifying one of the lateral strips of a slot line, thereby producing two different current paths. The antenna occupies a very small area of 14.5times16.6 mm2 including the ground plane on a substrate having dielectric constant 4.4 and thickness 1.6 mm at 2.2 GHz. The antenna resonates with two bands from 2.2 to 2.52 GHz and from 5 to 10 GHz with good matching, good radiation characteristics and moderate gain

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design of a dual linearly-polarised microstrip patch antenna, excited by two orthogonal microstrip feed lines, is presented. A reduction in patch size of 35% is obtained when compared to a square patch operating at the same frequency. The polarisations are oriented at +45 and - 45 with an isolation of more than 36 dB between the ports. Unlike earlier designs, the proposed structure provides better gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of a compact, single feed, dual frequency dual polarized and electronically reconfigurable microstrip antenna is presented in this paper. A square patch loaded with a hexagonal slot having extended slot arms constitutes the fundamental structure of the antenna. The tuning of the two resonant frequencies is realized by varying the effective electrical length of the slot arms by embedding varactor diodes across the slots. A high tuning range of 34.43% (1.037–1.394 GHz) and 9.27% (1.359–1.485 GHz) is achieved for the two operating frequencies respectively, when the bias voltage is varied from 0 to −30 V. The salient feature of this design is that it uses no matching networks even though the resonant frequencies are tuned in a wide range with good matching below −10 dB. The antenna has an added advantage of size reduction up to 80.11% and 65.69% for the two operating frequencies compared to conventional rectangular patches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact dual-band printed antenna covering the 2.4 GHz (2400-2485 MHz) and 5.2 GHz (5150-5350 MHz) WLAN bands is presented. The experimental analysis shows a 2:1 VSWR bandwidth of up to 32 and 8% for 2.4 and 5.2 GHz, respectively. The measured radiation patterns are nearly omnidirectional, with moderate gain in both the WLAN bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practical applications of microstrip antennas for mobile systems are in portable or pocket-size equipment and in vehicles. Antennas for VHFIUHF handheld portable equipment, such as pagers, portable telephones and transceivers, must naturally be small in size, light in weight and compact in structure. There is a growing tendency for portable equipment to be made smaller and smaller as the demand for personal communication rapidly increases, and the development of very compact hand-held units has become urgent.In this thesis work, main aim is to develop a more and more reduced sized microstrip patch antenna. It is well known that the smaller the antenna size, the lower the antenna efficiency. During the period of work, three different compact circular sided microstrip patches are developed and analysed, which have a significant size reduction compared to standard circular disk antenna (the most compact one of the basic microstrip patch configurations), without much deterioration of its properties like gain, bandwidth and efficiency. In addition to this the interesting results, dual port operation and circular polarization are also observed for some typical designs of these patches. These make the patches suitable for satellite and mobile communication systems.The theoretical investigations are carried out on these compact patches. The empirical relations are developed by modifying the standard equations of rectangular and circular disk microstrip patches, which helps to predict the resonant frequencies easily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Mathematics, Cochin University of Science and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need of miniaturization in the present day communication industry is challenging. In the present scenario, printed antenna technology is highly suitable for wireless communication due to its low profile and other desirable radiation characteristics. Small monopole type antennas are overruled by compact small antennas for present day mobile communication applications. Coplanar waveguides (CPW) are printed on one side of a dielectric substrate. CPW have attracted the attention of antenna designers due to their excellent properties like ease of integration with ‘MMIC’, low cost, wide bandwidth, flexibility towards multiband operation, low radiation leakage and less dispersion. The requirement of omnidirectional coverage, light weight and low cost made these CPW fed antennas a good candidate for wireless applications. The main focus of the thesis is the study of coplanar waveguide transmission line. Rigorous investigations were performed on both the ground plane and signal strip of a coplanar waveguide transmission line to create effective radiation characteristics. Good amount of works have been done to transform CPW line to antenna suitable for mobile phone applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. Even mathematicians like H. Poincare worried about this. He observed that mathematical models are over idealizations, for instance, he said that only in Mathematics, equality is a transitive relation. A first attempt to save this situation was perhaps given by K. Menger in 1951 by introducing the concept of statistical metric space in which the distance between points is a probability distribution on the set of nonnegative real numbers rather than a mere nonnegative real number. Other attempts were made by M.J. Frank, U. Hbhle, B. Schweizer, A. Sklar and others. An aspect in common to all these approaches is that they model impreciseness in a probabilistic manner. They are not able to deal with situations in which impreciseness is not apparently of a probabilistic nature. This thesis is confined to introducing and developing a theory of fuzzy semi inner product spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, three major types of ultra wide band planar antennas are investigated: Monopole and Slot. Three novel compact UWB antennas, suitable for poratble applications, are designed and characterized, namely 1) Ground modified monopole 2) Serrated monopole 3) Triangular slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and timedomain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated