924 resultados para Localized adiposity
Resumo:
Melanoma progression is associated with changes in adhesion receptor expression, in particular upregulation of N-cadherin which promotes melanoma cell survival and invasion. Plasma membrane lipid rafts contribute to the compartmentalization of signaling complexes thereby regulating their function, but how they may affect the properties of adhesion molecules remains elusive. In this study, we addressed the question whether lipid rafts in melanoma cells may contribute to the compartmentalization of N-cadherin. We show that a fraction of N-cadherin in a complex with catenins is associated with cholesterol/sphingolipid-rich membrane microdomains in aggressive melanoma cells in vitro and experimental melanomas in vivo. Partitioning of N-cadherin in membrane rafts is not modulated by growth factors and signaling pathways relevant to melanoma progression, is not necessary for cell-cell junctions' establishment or maintenance, and is not affected by cell-cell junctions' and actin cytoskeleton disruption. These results reveal that two independent pools of N-cadherin exist on melanoma cell surface: one pool is independent of lipid rafts and is engaged in cell-cell junctions, while a second pool is localized in membrane rafts and does not participate in cell-cell adhesions. Targeting to membrane rafts may represent a previously unrecognized mechanism regulating N-cadherin function in melanoma cells.
Resumo:
Combined radiation and hormone therapies have become common clinical practice in recent years for locally-advanced prostate cancers. The use of such concomitant therapy in the treatment of breast disease has been infrequently reported in the literature, but seems justified given the common hormonal dependence of breast cancer and the potential synergistic effect of these two treatment modalities. As adjuvant therapy, two strategies are used in daily clinical practice: upfront aromatase inhibitors or sequentially after a variable delay of tamoxifen. These molecules may, thus, interact with radiotherapy. Retrospectives studies recently published did not show any differences in terms of locoregional recurrences between concurrent or sequential radiohormonotherapy. Lung and skin fibroses due to concurrent treatment are still under debate. Nevertheless, late side effects appeared to be increased by such a treatment, particularly in hypersensitive patients identified at risk by the lymphocyte predictive test. Concurrent radiohormonotherapy should, thus, be delivered cautiously at least for these patients. This article details the potent advantages and risks of concurrent use of adjuvant hormonotherapy and radiotherapy in localized breast cancers.
Resumo:
Atherogenic dyslipidemia, manifest by low HDL-cholesterol and high TG levels, is an important component of ATP-III defined metabolic syndrome. Here, we dissected the phenotypic and genetic architecture of these traits by assessing their relationships with other metabolically relevant measures, including plasma adipo-cytokines, highly sensitive C-reactive protein (hsCRP) and LDL particle size, in a large family data set (n=2800) and in an independent set of dyslipidemic cases (n=716) and normolipidemic controls (n=1073). We explored the relationships among these phenotypes using variable clustering and then estimated their genetic heritabilities and cross-trait correlations. In families, four clusters explained 61% of the total variance, with one adiposity-related cluster (including hsCRP), one BP-related cluster, and two lipid-related clusters (HDL-C, TG, adiponectin and LDL particle size; apoB and non-HDL-C). A similar structure was observed in dyslipidemic cases and normolipidemic controls. The genetic correlations in the families largely paralleled the phenotype clustering results, suggesting that common genes having pleiotropic effects contributed to the correlations observed. In summary, our analyses support a model of metabolic syndrome with two major components, body fat and lipids, each with two subcomponents, and quantifies their degree of overlap with each other and with metabolic-syndrome related measures (adipokines, LDL particle size and hsCRP).
Lipoprotein lipase and leptin are accumulated in different secretory compartments in rat adipocytes.
Resumo:
Adipose cells produce and secrete several physiologically important proteins, such as lipoprotein lipase (LPL), leptin, adipsin, Acrp30, etc. However, secretory pathways in adipocytes have not been characterized, and vesicular carriers responsible for the accumulation and transport of secreted proteins have not been identified. We have compared the intracellular localization of two proteins secreted from adipose cells: leptin and LPL. Adipocytes accumulate large amounts of both proteins, suggesting that neither of them is targeted to the constitutive secretory pathway. By means of velocity centrifugation in sucrose gradients, equilibrium density centrifugation in iodixanol gradients, and immunofluorescence confocal microscopy, we determined that LPL and leptin were localized in different membrane structures. LPL was found mainly in the endoplasmic reticulum with a small pool being present in low density membrane vesicles that may represent a secretory compartment in adipose cells. Virtually all intracellular leptin was localized in these low density secretory vesicles. Insulin-sensitive Glut4 vesicles did not contain either LPL or leptin. Thus, secretion from adipose cells is controlled both at the exit from the endoplasmic reticulum as well as at the level of "downstream" secretory vesicles.
Resumo:
The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function.
Resumo:
OBJECTIVES: A lipidomic approach was employed in a clinically well-defined cohort of healthy obese women to explore blood lipidome phenotype ascribed to body fat deposition, with emphasis on epicardial adipose tissue (EAT). METHODS: The present investigation delivered a lipidomics signature of epicardial adiposity under healthy clinical conditions using a cohort of 40 obese females (age: 25-45 years, BMI: 28-40 kg/m(2) ) not showing any metabolic disease traits. Lipidomics analysis of blood plasma was employed in combination with in vivo quantitation of mediastinal fat depots by computerized tomography. RESULTS: All cardiac fat depots correlated to indicators of hepatic dysfunctions (ALAT and ASAT), which describe physiological connections between hepatic and cardiac steatosis. Plasma lipidomics encompassed overall levels of lipid classes, fatty acid profiles, and individual lipid species. EAT and visceral fat associated with diacylglycerols (DAG), triglycerides, and distinct phospholipid and sphingolipid species. A pattern of DAG and phosphoglycerols was specific to EAT. CONCLUSIONS: Human blood plasma lipidomics appears to be a promising clinical and potentially diagnostic readout for patient stratification and monitoring. Association of blood lipidomics signature to regio-specific mediastinal and visceral adiposity under healthy clinical conditions may help provide more biological insights into obese patient stratification for cardiovascular disease risks.
Resumo:
Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are currently under development for the intracellular delivery of therapeutics. However, the mechanisms of cellular uptake and the cellular reaction to this uptake, independent of therapeutics, are not well defined. The interactions of biocompatible cationic aminoUSPIONs with human cells was studied in 2D and 3D cultures using biochemical and electron microscopy techniques. AminoUSPIONs were internalized by human melanoma cells in 2D and 3D cultures. Uptake was clathrin mediated and the particles localized in lysosomes, inducing activation of the lysosomal cathepsin D and decreasing the expression of the transferrin receptor in human melanoma cells and/or skin fibroblasts. AminoUSPIONs deeply invaded 3D spheroids of human melanoma cells. Thus, aminoUSPIONs can invade tumors and their uptake by human cells induces cell reaction.
Resumo:
Long polymers in solution frequently adopt knotted configurations. To understand the physical properties of knotted polymers, it is important to find out whether the knots formed at thermodynamic equilibrium are spread over the whole polymer chain or rather are localized as tight knots. We present here a method to analyze the knottedness of short linear portions of simulated random chains. Using this method, we observe that knot-determining domains are usually very tight, so that, for example, the preferred size of the trefoil-determining portions of knotted polymer chains corresponds to just seven freely jointed segments.
Resumo:
PURPOSE: To evaluate functional and ultrastructural changes in the retina of scavenger receptor B1 (SR-BI) knockout (KO) mice consuming a high fat cholate (HFC) diet. METHODS: Three-month-old male KO and wild-type (WT) mice were fed an HFC diet for 30 weeks. After diet supplementation, plasma cholesterol levels and electroretinograms were analyzed. Neutral lipids were detected with oil red O, and immunohistochemistry was performed on cryostat ocular tissue sections. The retina, Bruch's membrane (BM), retinal pigment epithelium (RPE), and choriocapillaris (CC) were analyzed by transmission electron microscopy. RESULTS: Using the WT for reference, ultrastructural changes were recorded in HFC-fed SR-BI KO mice, including lipid inclusions, a patchy disorganization of the photoreceptor outer segment (POS) and the outer nuclear layer (ONL), and BM thickening with sparse sub-RPE deposits. Within the CC, there was abnormal disorganization of collagen fibers localized in ectopic sites with sparse and large vacuolization associated with infiltration of macrophages in the subretinal space, reflecting local inflammation. These lesions were associated with electroretinographic abnormalities, particularly increasing implicit time in a- and b-wave scotopic responses. Abnormal vascular endothelial growth factor (VEGF) staining was detected in the outer nuclear layer. CONCLUSIONS: HFC-fed SR-BI KO mice thus presented sub-RPE lipid-rich deposits and functional and morphologic alterations similar to some features observed in dry AMD. The findings lend further support to the hypothesis that atherosclerosis causes retinal and subretinal damage that increases susceptibility to some forms of AMD.
Resumo:
The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors using the tetON expression cassette in comparison with the CMV promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although GFP was mainly expressed into neurons with both vectors, the relative proportions of DARPP-32+ projection neurons and parvalbumin+ interneurons were respectively 13:1 and 2:1 for the CMV and tetON vectors. DARP32+ neurons projecting to the globus pallidus were strongly GFP+ with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV but poorly by the tetON vector. Numerous GFP+ cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP+ neurons were observed with the CMV but not the tetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-tetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase+ neurons by the tetON vector whereas with the CMV vector, GFP+ cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-tetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.
Resumo:
The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease.
Resumo:
Our study describes tissue-specific migration of T and B cells during a localized anti-viral immune response. After mouse mammary tumor virus (MMTV) injection, B lymphocytes of the draining lymph node become infected and present a retroviral superantigen to CD4(+) T lymphocytes. Infected B cells receive superantigen-mediated help in a fashion comparable to classical immune responses. To investigate the fate of T and B lymphocytes that had interacted via cognate help in the same peripheral lymph node microenvironment we adoptively transferred them into naive recipients. Here we show that MMTV-infected B cells and superantigen-stimulated T cells were programmed to migrate to distinct sites of the body. Plasmablasts but not T cells migrated to the mammary gland and activated alpha4beta1 integrins were found to have a crucial role in the migration to the mammary gland. In contrast, T cells had a much higher affinity for secondary lymphoid organs and large intestine. This demonstrates that upon antigen-driven B and T lymphocyte interaction in the local draining lymph node a subset-specific homing program for B and T lymphocytes is induced.
Resumo:
Résumé : Le centrosome contient une paire de centrioles entourée par du matériel péricentriolaire (PCM) et cet ensemble constitue le centre organisateur des microtubules de la majorité des cellules animales. Tout comme l'ADN, 1'unique centrosome présent au début du cycle cellulaire est dupliqué une et une seule fois pour former deux centrosomes qui vont orchestrer la mise en place du fuseau mitotique. La duplication du centrosome doit être soumise à une régulation précise car la présence d'un seul ou de plus de deux centrosomes peut entraîner la formation d'un fuseau mitotique aberrant, la mauvaise ségrégation des chromosomes et l'aneuploïdie. Bien que la duplication des centrioles soit un phénomène clé pour la duplication du centrosome lui-même, les mécanismes impliqués dans la formation des centrioles sont peu connus et constituent une importante question de biologie cellulaire. Dans cette thèse, nous nous sommes concentrés sur l'analyse de HsSAS-6. Nous avons trouvé que cette protéine est nécessaire pour la formation d'un centriole et qu'elle est localisée spécifiquement à la base des nouveaux centrioles formés. Les niveaux de HsSAS-6 oscillent pendant le cycle cellulaire : la protéine est absente en G1, commence à s'accumuler au niveau du centriole et dans le cytoplasme dès le début de la phase S de synthèse et disparaît abruptement pendant l'anaphase, où probablement APC/CCdlh1 la dirige vers une dégradation par le protéasome 26S. Il est important de noter que la surexpression de HsSAS-6 entraîne la formation de multiples centrioles au lieu d'un seul, ce qui indique que les niveaux de HsSAS-6 déterminent le nombre de centrioles formés. En plus de HsSAS-6, nous avons aussi étudié la lignée mutante sas-2 de C. elegans qui quelques fois assemble un fuseau multi-polaire dans l'embryon à une cellule. Nous avons montré que ce phénotype est la conséquence de la présence de multiples centrioles dans les cellules du sperme. Enfin, nous avons aussi préparé une palette de vecteurs compatibles avec le système Gateway pour permettre la génération rapide de lignées cellulaires humaines exprimant des protéines de manière inductible. De plus, nous avons commencé à développer une méthode pour évaluer la duplication des centrioles par le biais d'une plateforme de criblage d'une librairie de siRNA humains. Dans l'ensemble, notre travail a pu apporter une nouvelle compréhension du processus de duplication des centrioles et a contribué au développement de nouveaux outils de recherche de ce processus. Summary : Centrosomes contain a pair of centrioles surrounded by pericentriolar material (PCM) and serve as the main microtubule organizing centers (MTOCs) of most animal cells. Just like the DNA, the single centrosome present early in the cell cycle duplicates once and only once to give rise to two centrosomes which will then direct assembly of a bipolar spindle. Centrosome duplication must be precisely regulated because the presence of either one or more than two centrosomes can lead to the assembly of an aberrant spindle, chromosome missegregation and aneuploidy. Although duplication of centrioles is key for that of the entire centrosome, the mechanisms underlying centriole formation are poorly understood and represent an important question in cell biology. In this thesis, we focused on the analysis of HsSAS-6. We found that this protein is required for centriole formation and that it is localized specifically at the base of newly forming centrioles. The levels of HsSAS-6 oscillate across the cell cycle. The protein is absent during G1, starts to accumulate at the centriole and in the cytoplasm at the onset of S phase and disappears abruptly during anaphase when it is targeted for 26S proteasome dependent degradation probably by the APC/CCdh1. Importantly, overexpression of HsSAS-6 leads to the formation of multiple centrioles instead of just one, indicating that levels of HsSAS-6 determine the number of centrioles at each cell cycle. Besides HsSAS-6 that is the main focus of this thesis, we have also investigated the C. elegans mutant strain sas-2, which sometimes assembles a multipolar spindle in the one cell stage embryo. We have shown that this phenotype derives from the presence of multiple centrioles in sperm cells. Moreover, we prepared a set of Gateway compatible vectors for fast generation of human cell lines with inducible protein expression. Finally, we started to develop an assay for centriole duplication that can be used in a high throughput setting for screening of human siRNA libraries. Taken together, our work brought novel insights into the process of centriole duplication and lead to the development of new tools for further investigation of this process.
Resumo:
Four methods were tested to assess the fire-blight disease response on grafted pear plants. The leaves of the plants were inoculated with Erwinia amylovora suspensions by pricking with clamps, cutting with scissors, local infiltration, and painting a bacterial suspension onto the leaves with a paintbrush. The effects of the inoculation methods were studied in dose-time-response experiments carried out in climate chambers under quarantine conditions. A modified Gompertz model was used to analyze the disease-time relatiobbnships and provided information on the rate of infection progression (rg) and time delay to the start of symptoms (t0). The disease-pathogen-dose relationships were analyzed according to a hyperbolic saturation model in which the median effective dose (ED50) of the pathogen and maximum disease level (ymax) were determined. Localized infiltration into the leaf mesophile resulted in the early (short t0) but slow (low rg) development of infection whereas in leaves pricked with clamps disease symptoms developed late (long t0) but rapidly (high rg). Paintbrush inoculation of the plants resulted in an incubation period of medium length, a moderate rate of infection progression, and low ymax values. In leaves inoculated with scissors, fire-blight symptoms developed early (short t0) and rapidly (high rg), and with the lowest ED50 and the highest ymax
Resumo:
Peripheral blood mononuclear cells from subjects never exposed to Leishmania were stimulated with Leishmania guyanensis. We demonstrated that L. guyanensis-stimulated CD8(+) T cells produced interferon (IFN)- gamma and preferentially expressed the V beta 14 T cell receptor (TCR) gene family. In addition, these cells expressed cutaneous lymphocyte antigen and CCR4 surface molecules, suggesting that they could migrate to the skin. Results obtained from the lesions of patients with localized cutaneous leishmaniaisis (LCL) showed that V beta 14 TCR expression was increased in most lesions (63.5%) and that expression of only a small number of V beta gene families (V beta 1, V beta 6, V beta 9, V beta 14, and V beta 24) was increased. The presence of V beta 14 T cells in tissue confirmed the migration of these cells to the lesion site. Thus, we propose the following sequence of events during infection with L. guyanensis. After initial exposure to L. guyanensis, CD8(+) T cells preferentially expressing the V beta 14 TCR and secreting IFN- gamma develop and circulate in the periphery. During the infection, these cells migrate to the skin at the site of the parasitic infection. The role of these V beta 14 CD8(+) T cells in resistance to infection remains to be determined conclusively.