918 resultados para Load flour calculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open web steel joists are designed in the United States following the governing specification published by the Steel Joist Institute. For compression members in joists, this specification employs an effective length factor, or K-factor, in confirming their adequacy. In most cases, these K-factors have been conservatively assumed equal to 1.0 for compression web members, regardless of the fact that intuition and limited experimental work indicate that smaller values could be justified. Given that smaller K-factors could result in more economical designs without a loss in safety, the research presented in this thesis aims to suggest procedures for obtaining more rational values. Three different methods for computing in-plane and out-of-plane K-factors are investigated, including (1) a hand calculation method based on the use of alignment charts, (2) computational critical load (eigenvalue) analyses using uniformly distributed loads, and (3) computational analyses using a compressive strain approach. The latter method is novel and allows for computing the individual buckling load of a specific member within a system, such as a joist. Four different joist configurations are investigated, including an 18K3, 28K10, and two variations of a 32LH06. Based on these methods and the very limited number of joists studied, it appears promising that in-plane and out-of-plane K-factors of 0.75 and 0.85, respectively, could be used in computing the flexural buckling strength of web members in routine steel joist design. Recommendations for future work, which include systematically investigating a wider range of joist configurations and connection restraint, are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that causes persistent infection characterized by the appearance of inflammatory lesions in various organs. To define the sites of persistence, 5 goats were infected with a molecular clone of CAEV, and the viral load was monitored by real-time-PCR and RT-PCR in different sites 8 years after infection. The lymph nodes proved to be an important virus reservoir, with moderate virus replication relative to what is reported for lentiviruses of primates. Mammary gland and milk cells were preferred sites of viral replication. The viral load varied significantly between animals, which points to an important role of the genetic background. We found a clear association between occurrence of histopathological lesions and viral load in specific sites. The mRNA expression analysis of several cytokines did not reveal differences between animals that could explain the considerable individual variations in viral load observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ankle-brachial pressure index (ABI) is a simple, inexpensive, and useful tool in the detection of peripheral arterial occlusive disease (PAD). The current guidelines published by the American Heart Association define ABI as the quotient of the higher of the systolic blood pressures (SBPs) of the two ankle arteries of that limb (either the anterior tibial artery or the posterior tibial artery) and the higher of the two brachial SBPs of the upper limbs. We hypothesized that considering the lower of the two ankle arterial SBPs of a side as the numerator and the higher of the brachial SBPs as the denominator would increase its diagnostic yield. METHODS: The former method of eliciting ABI was termed as high ankle pressure (HAP) and the latter low ankle pressure (LAP). ABI was assessed in 216 subjects and calculated according to the HAP and the LAP method. ABI findings were confirmed by arterial duplex ultrasonography. A significant arterial stenosis was assumed if ABI was <0.9. RESULTS: LAP had a sensitivity of 0.89 and a specificity of 0.93. The HAP method had a sensitivity of 0.68 and a specificity of 0.99. McNemar's test to compare the results of both methods demonstrated a two-tailed P < .0001, indicating a highly significant difference between both measurement methods. CONCLUSIONS: LAP is the superior method of calculating ABI to identify PAD. This result is of great interest for epidemiologic studies applying ABI measurements to detect PAD and assessing patients' cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS pandemic by preventing secondary transmission and disease in vaccine recipients who become infected. To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vaccine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test that compares the distribution of viral load between the infected subgroups of vaccine and placebo recipients does not assess a causal effect of vaccine, because the comparison groups are selected after randomization. To address this problem, we formulate clinically relevant causal estimands using the principal stratification framework developed by Frangakis and Rubin (2002), and propose a class of logistic selection bias models whose members identify the estimands. Given a selection model in the class, procedures are developed for testing and estimation of the causal effect of vaccination on viral load in the principal stratum of subjects who would be infected regardless of randomization assignment. We show how the procedures can be used for a sensitivity analysis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Although combination antiretroviral therapy (cART) dramatically reduces rates of AIDS and death, a minority of patients experience clinical disease progression during treatment. OBJECTIVE: To investigate whether detection of CXCR4(X4)-specific strains or quantification of X4-specific HIV-1 load predict clinical outcome. METHODS: From the Swiss HIV Cohort Study, 96 participants who initiated cART yet subsequently progressed to AIDS or death were compared with 84 contemporaneous, treated nonprogressors. A sensitive heteroduplex tracking assay was developed to quantify plasma X4 and CCR5 variants and resolve HIV-1 load into coreceptor-specific components. Measurements were analyzed as cofactors of progression in multivariable Cox models adjusted for concurrent CD4 cell count and total viral load, applying inverse probability weights to adjust for sampling bias. RESULTS: Patients with X4 variants at baseline displayed reduced CD4 cell responses compared with those without X4 strains (40 versus 82 cells/microl; P = 0.012). The adjusted multivariable hazard ratio (HR) for clinical progression was 4.8 [95% confidence interval (CI) 2.3-10.0] for those demonstrating X4 strains at baseline. The X4-specific HIV-1 load was a similarly independent predictor, with HR values of 3.7 (95% CI, 1.2-11.3) and 5.9 (95% CI, 2.2-15.0) for baseline loads of 2.2-4.3 and > 4.3 log10 copies/ml, respectively, compared with < 2.2 log10 copies/ml. CONCLUSIONS: HIV-1 coreceptor usage and X4-specific viral loads strongly predicted disease progression during cART, independent of and in addition to CD4 cell count or total viral load. Detection and quantification of X4 strains promise to be clinically useful biomarkers to guide patient management and study HIV-1 pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different codes are used for Monte Carlo (MC) calculations in radiation therapy. In this research, MCNP4C and GEANT3 codes have been compared in calculations of dosimetric characteristics of Varian Clinac 2300C/D. The parameters of influence in the differences seen in dosimetric features were discussed. This study emphasizes that both MCNP4C and GEANT3 MC can be used in radiation therapy computations and their differences in photon spectra calculations have a negligible effect on percentage depth dose computations in radiation therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: CD4+ T-cell recovery in patients with continuous suppression of plasma HIV-1 viral load (VL) is highly variable. This study aimed to identify predictive factors for long-term CD4+ T-cell increase in treatment-naive patients starting combination antiretroviral therapy (cART). METHODS: Treatment-naive patients in the Swiss HIV Cohort Study reaching two VL measurements <50 copies/ml >3 months apart during the 1st year of cART were included (n=1816 patients). We studied CD4+ T-cell dynamics until the end of suppression or up to 5 years, subdivided into three periods: 1st year, years 2-3 and years 4-5 of suppression. Multiple median regression adjusted for repeated CD4+ T-cell measurements was used to study the dependence of CD4+ T-cell slopes on clinical covariates and drug classes. RESULTS: Median CD4+ T-cell increases following VL suppression were 87, 52 and 19 cells/microl per year in the three periods. In the multiple regression model, median CD4+ T-cell increases over all three periods were significantly higher for female gender, lower age, higher VL at cART start, CD4+ T-cell <650 cells/microl at start of the period and low CD4+ T-cell increase in the previous period. Patients on tenofovir showed significantly lower CD4+ T-cell increases compared with stavudine. CONCLUSIONS: In our observational study, long-term CD4+ T-cell increase in drug-naive patients with suppressed VL was higher in regimens without tenofovir. The clinical relevance of these findings must be confirmed in, ideally, clinical trials or large, collaborative cohort projects but could influence treatment of older patients and those starting cART at low CD4+ T-cell levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood plastic composites (WPCs) have gained popularity as building materials because of their usefulness in replacing solid wood in a variety of applications. These composites are promoted as being low-maintenance, high-durability products. However, it has been shown that WPCs exposed to weathering may experience a color change and/or loss in mechanical properties. An important requirement for building materials used in outdoor applications is the retention of their aesthetic qualities and mechanical properties during service life. Therefore, it is critical to understand the photodegradation mechanisms of WPCs exposed to UV radiation and to develop approaches to stabilize these composites (both unstabilized and stabilized) as well as the effect of weathering on the color fade and the retention of mechanical properties were characterized. Since different methods of manufacturing WPCs lead to different surface characteristics, which can influence weathering, the effect of manufacturing method on the photodegradation of WPCs was investigated first. Wood flour (WF) filled high-density polyethylene (HDPE) composite samples were either injection molded, extruded, or extruded and then planed. Fourier transform infrared (FTIR) spectroscopy was used to monitor the surface chemistry of the manufactured composites. The spectra showed that the surface of planed samples had more wood component than extruded and injection molded samples, respectively. After weathering, the samples were analyzed for color fade, and loss of flexural properties. The final lightness of the composites was not dependent upon the manufacturing method. However the mechanical property loss was dependent upon manufacturing method. The samples with more wood component at the surface (planed samples) experienced a larger percentage of total loss in flexural properties after weathering due to a greater effect of moisture on the samples. The change in surface chemistry of HDPE and WF/HDPE composites after weathering was studied using spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) was used to characterize the occurrence of surface oxidation whereas FTIR spectroscopy was used to monitor the development of degradation products, such as carbonyl groups and vinyl groups, and to determine changes in HDPE crystallinity. Surface oxidation occurred immediately after exposure for both the neat HDPE and WF/HDPE composites. After weathering, the surface of the WF/HDPE composites was oxidized to a greater extent than the neat HDPE after weathering. This suggests that photodegradation is exacerbated by the addition of the carbonyl functional groups of the wood fibers within the HDPE atrix during composite manufacturing. While neat HDPE may undergo cross-linking in the initial stages of accelerated weathering, the WF may physically hinder the ability of the HDPE to cross-link resulting in the potential for HDPE chain scission to dominate in the initial weathering stages of the WF/HDPE composites. To determine which photostabilizers are most effective for WF/HDPE composites, factorial experimental designes were used to determine the effects of adding two hindered amine light stabilizers, an ultraviolet absorber, and a pigment on the color made and mechanical properties of both unweathered and UV weathered samples. Both the pigment and ultraviolet absorber were more effective photostabilizers for WF/HDPE composites than hinder amine light stabilizers. The ineffectiveness of hindered amine light stabilizers in protecting WPCs against UV radiation was attribuated to the acid/base reactions occurring between the WF and hindered amine light stabilizer. The efficiency of an ultraviolet absorber and/or pigment was also examined by incorporating different concentration of an ultraviolet absorber and/or pigment into WF/HDPE composites. Color change and flexural properties were determined after accelerated UV weathering. The lightness of the composite after weathering was influenced by the concentration of both the ultraviolet absorber by masking the bleaching wood component as well as blocking UV light. Flexural MOE loss was influenced by an increase in ultraviolet absorber concentration, but increasing pigment concentration from 1 to 2% had little influence on MOE loss. However, increasing both ultraviolet absorber and pigment concentration resulted in improved strength properties over the unstabilized composites after 3000 h of weather. Finally, the change in surface chemistry due to weathering of WF/HDPE composites that were either unstabilized or stabilized with an ultraviolet absorber and/or pigment was analyzed using FTIR spectroscopy. The samples were tested for loss in modulus of elasticity, carbonyl and vinyl group formation at the surface, and change in HDPE crystallinity. It was concluded that structural changes in the samples; carbonyl group formation, terminal vinyl group formation, and crystallinity changes cannot reliably be used to predict changes in modulus of elasticity using a simple linear relationship. The effect of cross-linking, chain scission, and crystallinity changes due to ultraviolet exposure as well as the interfacial degradation due to moisture exposure are inter-related factors when weathering HDPE and WF/HDPE composites.